Kyungpook Math. J. Volume 15, Number 2 December, 1975

DISTANCE IN THE FINITE AFFINE PLANE

By R. Gorton

1. Introduction

In 1960, J.W. Archbold [2] showed that a finite affine plane with coordinates in the finite field $GF(2^n)$ possesses a symmetric, rotationally and translationally invariant metric. Moreover, Archbold's metric d is "directed" in the sense that if P_1, P_2 and P_3 are collinear points, then $d(P_1, P_2) + d(P_2, P_3) = d(P_1, P_3)$. D.W. Crowe showed in 1964 [3] that $GF(2^{2n})$ acts like an Argand diagram over $GF(2^n)$ and used this polar representation to derive the trigonometry of the finite affine plane over $GF(2^{2n})$.

It is well known that any affine plane π can be obtained by deleting one line L_{∞} from an appropriate projective plane π^* and, moreover, that $\pi^*(\text{and hence }\pi)$ can be coordinatized with elements from a system $(R, +, \cdot)$ where $(R, +, \cdot)$ is a double loop; i.e.,

(1) (R, +) is a loop with identity 0. (2) $(R - \{0\}, \cdot)$ is a loop with identity 1.

(3) For any $x \in R$, $0 \cdot x = 0 = x \cdot 0$.

The purpose of this paper is to determine which finite affine planes possess a "metric" function d mapping the set of ordered pairs of points into the coordinatizing double loop R.

Perhaps the most basic properties inherent in the usual notion of distance are the following: Let $P_i(i=1,2,3,4)$ be affine points. Then (1) $d(P_1,P_2)=0$ if and only if $P_1=P_2$; (2) If there exists a finite sequence of translations T_1, T_2, \dots, T_n such that $T_1T_2\cdots T_n(P_1)=P_3$ and $T_1T_2\cdots T_n(P_2)=P_4$ then $d(P_1,P_2)=d(P_3, P_4)$; (3) If no such finite sequence of translations exists and P_1P_2 is parallel to P_3P_4 then $d(P_1,P_2) \neq d(P_3,P_4)$; We will show that every finite affine plane possesses a metric d with these properties and moreover, d is surjective (and hence directed) if and only if $(R, +, \cdot)$ is a right Veblen-Wedderburn system.

2. Existence of a metric

If L_1 and L_2 are lines of π^* concurrent with L_{∞} at the point W and if $A \neq W$

•

148 R. Gorton

is an ideal point then the perspectivity from L_1 to L_2 with center A will be called a *W*-perspectivity. A finite sequence of *W*-perspectivities is a *W*-projectivity. For each ideal point *W*, let \overline{W} denote the collection of all pairs (P,Q) such that P and Q are affine points and P, Q, W are collinear in π^* . If (P_1, Q_1) , $(P_2, Q_2) \in \overline{W}$ then (P_1, Q_1) is *W*-equivalent to (P_2, Q_2) if there exists a *W*-projectivity T such that $T(P_1) = P_2$ and $T(Q_1) = Q_2$. Obviously *W*-equivalence is an equivalence

relation on \overline{W} .

Let \overline{W} denote the set of W-equivalence classes. Evidently there exists a unique W-equivalence class N such that for any affine point P, $(P, P) \in N$. An injection $d_W: \overline{W} \to R$ will be called a W-metric if $d_W(N)=0$.

Let $\Omega = \bigcup_{W \in \mathbb{L}_{\infty}} \overline{W}$. A function $d: \Omega \to R$ will be called a *metric* if, for each ideal point W, the restriction d_W of d to \overline{W} is a W-metric.

THEOREM 1. Every finite affine plane has a metric.

PROOF. It is clearly sufficient to show that for each ideal point W, π has a W-metric. It is well known that there exists a positive integer b such that each line of π contains precisely b points. If B denotes a W-equivalence class and if L is a line of π containing W then B contains at least b distinct pairs (P, Q) where P and Q are incident with L. Since there are exactly b-1 lines parallel to L, then B contains at least b^2 elements. But the total number of elements of \overline{W} is

exactly b^3 . Thus the number of W-equivalence classes cannot exceed b which is precisely the number of elements in R.

3. Existence of a directed W-metric

If d_W is a W-metric and P and Q are affine points such that P, Q, W are collinear in π^* then let $d_W(P, Q) = d_W(B)$ where B is the unique W-equivalence class containing (P, Q). We shall say that d_W is *directed* if for each affine point P and for each $r \in R$ there exists a unique affine point Q such that $d_W(P, Q) = r$.

LEMMA 1. Let W be an ideal point such that π^* is (W, L_{∞}) -Desarguesian. If L_1, L_2, L_3 are distinct lines of π concurrent at W and if $T_i: L_i \rightarrow L_{i+1} (i=1,2)$ are W-perspectivities then $T_2T_1: L_1 \rightarrow L_3$ is a W-perspectivity.

PROOF. If P and Q are distinct affine points of L_1 then the line $[T_2T_1(P)] \cdot P$ intersects the line $[T_2T_1(Q)] \cdot Q$ at the ideal point A. Thus T_2T_1 is the W-perspectivity with center A.

.

Distance in the Finite Affine Plane 149

.

LEMMA 2. Let W be an ideal point such that π^* is (W, L_{∞}) -Desarguesian. If $L_i(i=1, 2, 3, 4)$ are lines of π concurrent at W and if $T_j: L_j \rightarrow L_{j+1}(j=1, 2, 3)$ are W-perspectivities then $T_3T_2T_1$ is a W-perspectivity if $L_1 \neq L_4$.

PROOF. If $L_1 \neq L_3$ or if $L_1 = L_2$, then the result is obvious. Hence we may assume that $L_3 = L_1 \neq L_2$. If $L_2 \neq L_4$ then Lemma 1 shows that T_3T_2 is a Wperspectivity and by the same lemma, $(T_3T_2)T_1$ is a W-perspectivity. Thus we may assume that $L_2 = L_4$:

Let P_1 and Q_1 be distinct points of L_1 . Let $T_i(P_i) = P_{i+1}, T_i(Q_i) = Q_{i+1}(i=1,2,3)$. If Q_1Q_4 is parallel to Q_2Q_3 , let $Q = Q_1Q_2 \cdot Q_3Q_4$ and let $P = QW \cdot P_3P_4$. Then triangles PP_3P_2 and QQ_3Q_2 are centrally perspective from W whence $P = P_3P_4 \cdot P_1P_2$. Hence triangles QQ_1Q_4 and PP_1P_4 are centrally perspective from W whence P_1P_4 is parallel to Q_1Q_4 . Otherwise, if Q_1Q_4 is not parallel to Q_2Q_3 , let $Q' = Q_1Q_4 \cdot Q_2Q_3$ and let $P' = QW \cdot P_1P_3$. As before, $P' = P_1P_4 \cdot P_3P_2$. Hence, in either case, P_1P_4 is parallel to Q_1Q_4 whence $T_3T_2T_1$ is the W-perspectivity with center $Q_1Q_4 \cdot P_1P_4$.

An easy induction now shows

.

LEMMA 3. Let W be an ideal point such that π^* is (W, L_{∞}) -Desarguesian. If L_1 and L_2 are distinct lines of π and if $T: L_1 \rightarrow L_2$ is a W-projectivity then T is a W-perspectivity.

THEOREM 2. Let W be an ideal point of π . Then π^* is (W, L_{∞}) -Desarguesian if and only if π has a directed W-metric.

PROOF. Assume that π^* is (W, L_{∞}) -Desarguesian. If (P, Q_1) is W-equivalent to (P, Q_2) it follows from Lemma 3 that $Q_1 = Q_2$. Thus \overline{W} contains precisely b elements where b is the number of elements in R. Thus any W-metric is bijective and hence directed.

Conversely, assume that π has a bijective W-metric. Let triangles $P_1P_2P_3$ and $Q_1Q_2Q_3$ be centrally perspective from W and assume that P_1P_2 is parallel to Q_1Q_2 and P_2P_3 is parallel to Q_2Q_3 . Suppose, for sake of contradiction, that P_1P_3 is not parallel to Q_1Q_3 . Let $A=L_{\infty}\cdot P_1P_3$ and let $T:P_3Q_3\rightarrow P_1Q_1$ be the unique W-perspectivity with center A. Then (P_1,Q_1) is W-equivalent to $(P_1,T(Q_3))$ and $Q_1 \neq T(Q_3)$. Thus the number of W-equivalence classes is less than the number of distinct points on any line of π and this is the desired contradiction.

150 R. Gorton

4. Existence of a directed metric

.

•

If d is a metric such that d(P,Q)+d(Q,S)=d(P,S) whenever P,Q and S are: collinear affine points, then d is *directed* if, for each ideal point W, the restriction d_W of d to $\overline{\overline{W}}$ is a directed W-metric.

LEMMA 4. Let π^* be a right V-W plane. Let $P_i = (x_i, y_i), Q_i = (z_i, w_i)$ (i=1, 2) be

four distinct points of π such that Q_1Q_2 is parallel to P_1P_2 and P_1Q_1 is parallel to P_2Q_2 . Then $x_2 - x_1 = z_2 - z_1$ and $y_2 - y_1 = w_2 - w_1$.

PROOF. We will show that $x_2 - x_1 = z_2 - z_1$, the other result being obtained similarly. If $x_2 = x_1$, the result is obvious. Hence we may let $P_1Q_1 = [m, k_1]$, P_2Q_2 $= [m, k_2]$, $P_1P_2 = [n, k_3]$, $Q_1Q_2 = [n, k_4]$ where $m, n, k_1, k_2, k_3, k_4 \in \mathbb{R}$. Straight forward algebraic manipulation then shows that

 $(x_2-z_2-x_1+z_1)m = (x_2-z_2-x_1+z_1)n.$ Since $m \neq n$ and $(R - \{0\}, \cdot)$ is a loop, it follows that $x_2 - x_1 = z_2 - z_1.$

THEOREM 3. π has a directed metric if and only if $(R, +, \cdot)$ is a right V-W system.

PROOF. If π has a directed metric then the previous theorem shows that π^* is (W, L_{∞}) -Desarguesian for each ideal point W, whence $(R, +, \cdot)$ is a right V-W system.

Conversely, for each ideal point $W \neq Y$ let s_W be a non-zero element of R. Let $P_i = (x_i, y_i)$ (i=1, 2). Then, $d(P_1, P_2) = (x_2 - x_1)s_W$ if $(P_1, P_2) \in W$ and $d(P_1, P_2) = y_2 - y_1$ if $(P_1, P_2) \in Y$

defines a directed metric d by Lemma 4.

Some of these results appeared in the author's dissertation written at the Illinois Institute of Technology.

University of Dayton Dayton, Ohio 45469 U.S.A.

Distance in the Finite Affine Plane

•

-

-

.

151

REFERENCES

[1] A. Adrian Albert and Reuben Sandler, An Introduction to Finite Projective Planes, (Holt, Rinehart and Winston, New York, 1968).

[2] J.W. Archbold, A Metric for Plane Affine Geometry over $GF(2^n)$, Mathematika 7 (1000) 145 149

- **(1**960), 145---148.
- [3] D.W. Crowe, The Trigonometry of $GF(2^{2n})$ and Finite Hyperbolic Planes, Mathematika 11 (1964), 83-88.
- [4] R. Gorton, The Trigonometry of $AG(p^{2n})$, Mathematics Student (in press).
- [5] Marshall Hall, Jr., The Theory of Groups, (The Macmillan Company, New York, 1959).