DISTANCE IN THE FINITE AFFINE PLANE

By R. Gorton

1. Introduction

In 1960, J. W. Archbold [2] showed that a finite affine plane with coordinates in the finite field $G F\left(2^{n}\right)$ possesses a symmetric, rotationally and translationally invariant metric. Moreover, Archbold's metric d is "directed" in the sense that if P_{1}, P_{2} and P_{3} are collinear points, then $d\left(P_{1}, P_{2}\right)+d\left(P_{2}, P_{3}\right)=d\left(P_{1}, P_{3}\right)$.
D. W. Crowe showed in 1964 [3] that $G F\left(2^{2 n}\right)$ acts like an Argand diagram over $G F\left(2^{n}\right)$ and used this polar representation to derive the trigonometry of the finite affine plane over $G F\left(2^{2 n}\right)$.

It is well known that any affine plane π can be obtained by deleting one line L_{∞} from an appropriate projective plane π^{*} and, moreover, that π^{*} (and hence π) can be coordinatized with elements from a system ($R,+, \cdot$) where $(R,+, \cdot)$ is a double loop; i.e.,
(1) $(R,+)$ is a loop with identity 0.
(2) $(R-\{0\}, \cdot)$ is a loop with identity 1 .
(3) For any $x \in R, 0 \cdot x=0=x \cdot 0$.

The purpose of this paper is to determine which finite affine planes possess a "metric" function d mapping the set of ordered pairs of points into the coordinatizing double loop R.

Perhaps the most basic properties inherent in the usual notion of distance are the following: Let $P_{i}(i=1,2,3,4)$ be affine points. Then (1) $d\left(P_{1}, P_{2}\right)=0$ if and only if $P_{1}=P_{2}$; (2) If there exists a finite sequence of translations $T_{1}, T_{2}, \cdots, T_{n}$ such that $T_{1} T_{2} \cdots T_{n}\left(P_{1}\right)=P_{3}$ and $T_{1} T_{2} \cdots T_{n}\left(P_{2}\right)=P_{4}$ then $d\left(P_{1}, P_{2}\right)=d\left(P_{3}, P_{4}\right)$; (3) If no such finite sequence of translations exists and $P_{1} P_{2}$ is parallel to $P_{3} P_{4}$ then $d\left(P_{1}, P_{2}\right) \neq d\left(P_{3}, P_{4}\right)$; We will show that every finite affine plane possesses a metric d with these properties and moreover, d is surjective (and hence dirested) if and only if $(R,+\cdot \cdot)$ is a right Veblen-Wedderburn system.

2. Existence of a metric

If L_{1} and L_{2} are lines of π^{*} concurrent with L_{∞} at the point W and if $A(\neq W)$
is an ideal point then the perspectivity from L_{1} to L_{2} with center A will be called a W-perspectivity. A finite sequence of W-perspectivities is a W-projectivity.

For each ideal point W, let \bar{W} denote the collection of all pairs (P, Q) such that P and Q are affine points and P, Q, W are collinear in π^{*}. If $\left(P_{1}, Q_{1}\right),\left(P_{2}\right.$, $\left.Q_{2}\right) \in \bar{W}$ then $\left(P_{1}, Q_{1}\right)$ is W-equivalent to $\left(P_{2}, Q_{2}\right)$ if there exists a W-projectivity T such that $T\left(P_{1}\right)=P_{2}$ and $T\left(Q_{1}\right)=Q_{2}$. Obviously W-equivalence is an equivalence relation on \bar{W}.

Let $\overline{\bar{W}}$ denote the set of W-equivalence classes. Evidently there exists a unique W-equivalence class N such that for any affine point $P,(P, P) \in N$. An injection $d_{W}: \overline{\bar{W}} \rightarrow R$ will be called a W-metric if $d_{W}(N)=0$.

Let $\Omega=$ WuL $_{\infty} \overline{\overline{\bar{W}}}$. A function $d: \Omega \rightarrow R$ will be called a metric if, for each ideal point W, the restriction d_{W} of d to $\overline{\bar{W}}$ is a W-metric.

THEOREM 1. Every finite affine plane has a metric.

PROOF. It is clearly sufficient to show that for each ideal point W, π has a W-metric. It is well known that there exists a positive integer b such that each line of π contains precisely b points. If B denotes a W-equivalence class and if L is a line of π containing W then B contains at least b distinct pairs (P, Q) where P and Q are incident with L. Since there are exactly $b-1$ lines parallel to L, then B contains at least b^{2} elements. But the total number of elements of \bar{W} is exactly b^{3}. Thus the number of W-equivalence classes cannot exceed b which is precisely the number of elements in R.

3. Existence of a dirceted W-metric

If d_{W} is a W-metric and P and Q are affine points such that P, Q, W are collinear in π^{*} then let $d_{W}(P, Q)=d_{W}(B)$ where B is the unique W-equivalence class containing (P, Q). We shall say that d_{W} is directed if for each affine point P and for each $r \in R$ there exists a unique affine point Q such that $d_{W}(P, Q)=r$.
Lemma 1. Let W be an ideal point such that π^{*} is (W, L_{∞})-Desarguesian. If L_{1}, L_{2}, L_{3} are distinct lines of π concurrent at W and if $T_{i}: L_{i} \rightarrow L_{i+1}(i=1,2)$ are W-perspectiviiies then $T_{2} T_{1}: L_{1} \rightarrow L_{3}$ is a W-perspectivity.

PROOF. If P and Q are distinct affine points of L_{1} then the line $\left[T_{2} T_{1}(P)\right] \cdot P$ intersects the line $\left[T_{2} T_{1}(Q)\right] \cdot Q$ at the ideal point A. Thus $T_{2} T_{1}$ is the W. perspectivity with center A.

LEMMA 2. Let W be an ideal point such that π^{*} is (W, L_{∞})-Desarguesian. If $L_{i}(i=1,2,3,4)$ are lines of π concurrent at W and if $T_{j}: L_{j} \rightarrow L_{j+1}(j=1,2,3)$ are W-fersfectivities then $T_{3} T_{2} T_{1}$ is a W-perspectivity if $L_{1} \neq L_{4}$.

PROOF. If $L_{1} \neq L_{3}$ or if $L_{1}=L_{2}$, then the result is obvious. Hence we may assume that $L_{3}=L_{1} \neq L_{2}$. If $L_{2} \neq L_{4}$ then Lemma 1 shows that $T_{3} T_{2}$ is a W perspectivity and by the same lemma, $\left(T_{3} T_{2}\right) T_{1}$ is a W-perspectivity. Thus we may assume that $L_{2}=L_{4}$:

Let P_{1} and Q_{1} be distinct points of L_{1}. Let $T_{i}\left(P_{i}\right)=P_{i+1}, T_{i}\left(Q_{i}\right)=Q_{i+1}(i=1,2,3)$. If $Q_{1} Q_{4}$ is parallel to $Q_{2} Q_{3}$, let $Q=Q_{1} Q_{2} \cdot Q_{3} Q_{4}$ and let $P=Q W \cdot P_{3} P_{4}$. Then triangles $P P_{3} P_{2}$ and $Q Q_{3} Q_{2}$ are centrally perspective from W whence $P=P_{3} P_{4} \cdot P_{1} P_{2}$. Hence triangles $Q Q_{1} Q_{4}$ and $P P_{1} P_{4}$ are centrally perspective from W whence $P_{1} P_{4}$ is paraliel to $Q_{1} Q_{4}$. Otherwise, if . $Q_{1} Q_{4}$ is not parallel to $Q_{2} Q_{3}$, let $Q^{\prime}=Q_{1} Q_{4} \cdot Q_{2} Q_{3}$ and let $P^{\prime}=Q W \cdot P_{-} P_{3}$. As before, $P^{\prime}=P_{1} P_{4} \cdot P_{3} P_{2}$. Hence, in either case, $P_{1} P_{4}$ is parallel to $Q_{1} Q_{4}$ whence $T_{3} T_{2} T_{1}$ is the W-perspectivity with center $Q_{1} Q_{4} \cdot P_{1} P_{4}$.

An easy induction now shows
LEmMA 3. Let W be an ideal point such that π^{*} is (W, L_{∞})-Desarguesian. If L_{1} and L_{2} are distinct lines of π and if $T: L_{1} \rightarrow L_{2}$ is $a W$-projectivity then T is a W-persfectivity.

Thegrem 2. Let W be an ideal point of π. Then π^{*} is $\left(W, L_{\infty}\right)$-Desarguesian if and only if π has a directed W-metric.

PROOF. Assume that π^{*} is (W, L_{∞})-Desarguesian. If (P, Q_{1}) is W-equivalent to $\left(P, Q_{2}\right)$ it follows from Lemma 3 that $Q_{1}=Q_{2}$. Thus $\overline{\bar{W}}$ contains precisely b elements where b is the number of elements in R. Thus any W-metric is bijective and hence directed.

Conversely, assume that π has a bijective W-metric. Let triangles $P_{1} P_{2} P_{3}$ and $Q_{1} Q_{2} Q_{3}$ be centrally perspective from W and assume that $P_{1} P_{2}$ is parailel to $Q_{1} Q_{2}$ and $P_{\varepsilon} P_{3}$ is parallel to $Q_{2} Q_{3}$. Suppose, for sake of contradiction, that $P_{1} P_{3}$ is not parallel to $Q_{1} Q_{3}$. Let $A=L_{\infty} \cdot P_{1} P_{3}$ and let $T: P_{3} Q_{3} \rightarrow P_{1} Q_{1}$ be the unique W-perspectivity with center A. Then (P_{1}, Q_{1}) is W-equivalent to $\left(P_{1}, T\left(Q_{3}\right)\right)$ and $Q_{1} \neq T\left(Q_{3}\right)$. Thus the number of W-equivalence classes is less than the number of distinct points on any line of π and this is the desired contradiction.

4. Existence of a directed metric

If d is a metric such that $d(P, Q)+d(Q, S)=d(P, S)$ whenever P, Q and S are: collinear affine points, then d is directed if, for each ideal point W, the restriction d_{W} of d to $\overline{\bar{W}}$ is a directed W-metric.

LEMMA 4. Let π^{*} be a right $V-W$ plane. Let $P_{i}=\left(x_{i}, y_{i}\right), Q_{i}=\left(z_{i}, w_{i}\right)(i=1,2)$ befour distinct points of π such that $Q_{1} Q_{2}$ is parallel to $P_{1} P_{2}$ and $P_{1} Q_{1}$ is parallel to. $P_{2} Q_{2}$. Then $x_{2}-x_{1}=z_{2}-z_{1}$ and $y_{2}-y_{1}=w_{2}-w_{1}$.

PROOF. We will show that $x_{2}-x_{1}=z_{2}-z_{1}$, the other result being obtained similarly. If $x_{2}=x_{1}$, the result is obvious. Hence we may let $P_{1} Q_{1}=\left[m, k_{1}\right], P_{2} Q_{2}$ $=\left[m, k_{2}\right], \quad P_{1} P_{2}=\left[n, k_{3}\right], \quad Q_{1} Q_{2}=\left[n, k_{4}\right] \quad$ where $m, n, k_{1}, k_{2}, k_{3}, k_{4} \in R$. Straight. forward algebraic manipulation then shows that

$$
\left(x_{2}-z_{2}-x_{1}+z_{1}\right) m=\left(x_{2}-z_{2}-x_{1}+z_{1}\right) n .
$$

Since $m \neq n$ and ($R-\{0\}, \cdot$) is a loop, it follows that $x_{2}-x_{1}=z_{2}-z_{1}$.
THEOREM 3. π has a directed metric if and only if $(R,+, \cdot)$ is a right $V-W$ system.

PROOF. If π has a directed metric then the previous theorem shows that π^{*} is $\left(W, L_{\infty}\right)$-Desarguesian for each ideal point W, whence $(R,+, \cdot)$ is a right $V-W$ system.
Conversely, for each ideal point $W(\neq Y)$ let s_{W} be a non-zero element of R. Let: $P_{i}=\left(x_{i}, y_{i}\right)(i=1,2)$. Then,

$$
\begin{array}{lll}
& d\left(P_{1}, P_{2}\right)=\left(x_{2}-x_{1}\right) s_{W} & \text { if }\left(P_{1}, P_{2}\right) \in W \\
\text { and } & d\left(P_{1}, P_{2}\right)=y_{2}-y_{1} & \text { if }\left(P_{1}, P_{2}\right) \in Y
\end{array}
$$

defines a directed metric d by Lemma 4.
Some of these results appeared in the author's dissertation written at the Illinois Institute of Technology.
U.S.A.

REFERENCES

[1] A. Adrian Albert and Reuben Sandler, An Introduction to Finite Projective Planes, (Holt, Rinehart and Winston, New York, 1968).
[2] J.W. Archbold, A Metric for Plane Affine Geometry over $G F\left(2^{n}\right)$, Mathematika 7 (1960), 145-148.
[3] D. W. Crowe, The Trigonometry of $G F\left(2^{2 n}\right)$ and Finite Hyperbolic Planes, Mathematika 11 (1964), 83-88.
[4] R. Gorton, The Trigonometry of $A G\left(p^{2 n}\right)$, Mathematics Student (in press).
[5] Marshall Hall, Jr., The Theory of Groups, (The Macmillan Company, New York, 1959).

