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DISTANCE IN THE FINITE AFFINE PLANE 

By R. Gorton 

1. Introduction 

In 1960, ]. W. Archbold [2J showed that a finite affine plane with coordinates 

in the finite field GF(2n
) possesses a symmetric, rotationalIy and translationa lIy 

invariant metric. Moreover, Archbold’s metric d is “ directed" in the sense that 

if P 1, P2 and P 3 are coIIinear points, then d(P1, PZ)+d(P2' P 3)=d(Pl' P 3). 

D. W. Crowe showed in 1964 [3J that GF(2
2tl

) acts like an Argand diagram over 

GF(2n
) and used this polar representation to derive the trigonometry of the 

finite affine plane over GF(2
2n

). 

It is weII known that any affine plane π can be obtained by deleting one line 

L∞ from an appropriate projective plane 션 and, moreover, that π*(and hence 7r) 

can be coordinatized with elements from a system (R, +, .) where (R, +, .) is 

a double Ioop; i. e. , 
(1) (R, +) is a Ioop with identity O. 
(2) (R- {O} , .) is a Ioop with identity 1. 

(3) For any x E R , O'x=O=x'O. 

The purpose of this paper is to determine which finite affine planes possess a 

“ metric" function d mapping the set of ordered pairs of points into the 

coordinatizing double Ioop R. 
Perhaps the most basic properties. inherent in the usual notion of distance are 

the foIIowing: Let Piα=1， 2， 3， 4) be affine points. Then (1) d(PI' P 2)=0 if and 

only if P 1 = P 2; (2) If there exists a finite sequence of transla tÏons T l' T 2' .... Tη 

such that T 1T 2 ... T n(P1)=P3 and TIT2 ... Tn(P2)=P4 then d(P1, P2)=d(P3, P4); 

(3) If no such finite sequence of translations exists and P1P2 is paraI1el to P 3P4 
then d(Pj' P2) =i' dCP3, P4); We w iIl show that every finite affine plane possesses 

a metrÏc d with these properties and moreover, d is surjective (and hence direηted) 
if and only if (R, + .. ) is a right Veblen-Wedderburn system. 

2. Existence of a mctric 

If Ll and L2 are lines of 션 concurrent with L∞ at the point W and if A(=i' W) 
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is an ideal point then the perspectivity from Ll to L2 with center A will be 

called a W-perspectivity. A finite sequence of W-perspectivities is a W-γojectz'vity. 

For each ideal point W, let W denote the collection of all pairs (P, Q) such 

that P and Q are affine points and P , Q, W arc collinear in ír용. If (P1, Ql)' (P2’ 
Qz) E W then (P1, Ql) is W-equiνalent to CP2, Q2) if there exists a W-projectivity 

T such that T(P1)=P2 and T(Ql)=Q2' Obviously W-equivalence is an equivalence 

relation on W. 

Let W denote the set of W-equivalence classes. Evidently there exists a unique 

W-equivalence class N such that for any affine point P, (P, P) ε N. An injection 

d w : W • R will be called a W-metdc if dw(N)=O. 

Let Q = UW. A function d: Q • R will be called a metγψ if, for each ideal 
WIL~ 

point W, the restriction d w of d to W is a W-metric. 

THEOREM 1. Ez:ery finite affine Plane has a metric. 

PROOF. It is clear!y sufficient to show that for each ideal point W , π has a 

W-metric. It is well known that there exists a positive integer b such that each 

line of π contains precisely b p::lÏnts. If B denotes a fliιequivalence class and if L 

is a line of ír containing W then B contains at least b distinct pairs (P, Q) where 

P and Q are incident with L. Since there are exactly b-l lines parallel to L , 
2 

tl:en B contains at least b" elements. But the total number of elements of W is 

exactly b3
• Thus thc number Qf W-equivalence classes cannot exceed b which is 

precisεly the llumber of elements in R. 

3 .. Existenc~ oÎ a dirccted W-mεtric 

If dw is a W-πetrÏc and P and Q are affine points such that P, Q, W are 

colIinear in ír* t Ì1en let dwCP, Q)=dwCB) where B is the unique W-equivalence 

dass containi;~g CP, Q). We shall say that dw is directed if for each affine point 

P and for each r E R there exists a unique affine point Q such that dwCP, Q)=r. 

LEIVlMA 1. Let W be an ideal point such that ïC용 is CW, L∞)-Desarguesian. If 

Ll' Lι， L3 are distinct lz"nes of ïC concμrrent at W and zf T i : Li• Li+1(i =1 , 2) are 

W -perspectivities then T 2T 1 : Ll• L3 is a W -perspectivity. 

PROOF. If P and Q are distinct affine points of Ll then the line [T2T 1
CP)].p 

intersects the line [T 2T 1 CQ)] . Q at the ideal point A. Thus T 2T 1 is the W

perspectivity with center A. 
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LEMMA 2. Let W be an ideal point such that π* z's (W, L∞)-Desarguesian. 11 

;Li(i= 1, 2, 3, 4) m'e lines 01 rr concurrent at W and 1I T j : Lj• L j+ 1(j=1, 2, 3) are 

.lV -terstectivities then T 3T 2T 1 2'S a W -perspec!z"vzïy zl L 1 갖 L4' 

PROOF. lf L1 ~ L3 or if L1 =L2, then the result is obvious. Hence we may 

assume that L3=Ll ~ L2. lf L2 ~ L4 then Lemma 1 shows that T 3T z is a W

perspcctivity and by the same Iemma, (T3T 2)T1 is a W-perspectivity. Thus we 

may assume that L2=L4: 

Let P 1 and Ql be distinct points of L1• Let T i(P)=Pi+1, T i(Q)=Qi+ l(i=l , 2, 3). 

If QIQ4 is para l1eI to Q2Q3' let Q=Q8Z'Q3Q4 and let P=QW.P3P4. Then triangles 

PP3PZ and QQ3Q2 are centralIy perspective from W whence P=P3P4.P1P2. Hence 

triangles QQ84 and PP1P4 are centralIy perspective from W whence P 1P 4 is 

paraIieI to Q84' Otherwise, if. Q84 is not paralIel to Q2Q3' let Q'=Q84'Q2Q3 

.and let P' =QW.p_p:" As before, P'=P1P 4.P3P2. Hence, in either case, P 1P4 is 

paralleI to QIQ4 whence T 3T zT 1 is the W-perspectivity with center Q84 , PIP4' 

An easy induction now shows 

LEMMA 3. Let W be an ideal þoint sμch that 션 2'S (W, L∞)-Desarguesian. 11 

Ll and L2 are distinct lines 01 π and 21 T : L1• L2 is a W-projectivity then T is a 

W -persþectiviη. 

THEOREM 2. Let W be an ideal point 01 rr. Then π용 is (W, L∞)-Desaγgμesian zl 

and only 21 π has a directed W-ηwtric. 

PROOF. Assume that π* is (W, L∞)-Desarguesian. If (P, Ql) is W-equivalent to 

(P, Q2) it folIows from Lemma 3 that Ql =Q2' Thus W contains precisely b 

~lements where b is the number of elements in R. Thus any W-metric is bijective 

-and hence directed. 

Conversely, assume that rr has a bijective W-metric. Let triangles PIP~P3 and 

QIQ2Q3 be centrally perspective from Wand assume that PIPZ is parai1el to Q1Q;2 

and P ~P 3 is parallel to QZQ3' Suppose, for sake of contradiction, that P 1 P 3 is not 

parallel to QIQ3' Let A=L∞，P1P3 and let T: P ..,Q3• P 1Ql be the unique 

W-perspectivity with center A. Then (Pl' Ql) is W-equivalent to (P 1' T(Q3)) and 

'Ql ~ T(Q3)' Thus the number of W-equivalence classes is less than the number 

'Ûf distinct points on any 1ine of π and this is the desired contradiction. 
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4. Existence of a directed metric 

If d is a metric such that d(P, Q)+d(Q, S)=d(P, S) whenever P , Q and S are: 

collinear affine points, then d is d z"rected if, for each ideal point W , the 

restriction d w of d to W is a directed W-metric. 

LEMMA .4. Let π용 be a right V-W plane. Let Pi=(xi,Yi) , Qi=(zi'UJ씨 (z" = 1, 2) be

four distinc! points 01 π sμch that QIQ2 is parallel to PIPZ and P1Ql is paγallel to

PzQz. Then x2-x1 =z2- z 1 and Y2-Yl =zv2-zv1. 

PROOF. 찌Te will show that x2-x1 =zz-zl' the other result being obtainedi 

similarly. If x2=xl' the result is obvious. Hence we may let P1Ql = [η1， k1J , P2Qz 

= [m, kzJ , P 1P 2= [n, k3J, QIQZ= [n, k4J where m, n, k1, kz, k3, k4 ε R. Straight 

forward algebraic manipulation then shows that 

(XZ-Z2-X1 + zl)m= (xZ-z2-x1 +zl)n. 

Since m ;f:- n and (R- {이，.) is a loop, it follows that xZ-x1=zZ-zl' 

THEOREM 3. π has a d z"recfed metric tf and only tf (R, +, .) z"s a right V-W 

system. 

PROOF. If π has a directed metric then the previous theorem shows that π싹 is 

(W， L∞)-Desarguesian for each ideal point W , whence (R, +, .) is a right V-W 

system. 

Conversely, for each ideal point W( ;f:- Y) let Sw be a non-zero element of R. Let 

Pj = (xi, Yj) (i = 1, 2). Then, 

and 

d(Pl' P 2)= (x2-x1)sW 

d(Pl' P 2)=Y2-Yl 

defines a directed metric d by Lemma 4. 

if (P1, Pz) ε W 

if (Pl' P2) ε Y 

Some of these results appeared in the author’s dissertation written at the 

Illinois Institute of Technology. 

University of Dayton 
Dayton, Ohio 45469 

U. S. A. 
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