Kyungpook Math. J.
Volume 15. Number 1
June, 1975

INTEGRABILITY THEOREMS FOR TRIGONOMETRIC SERIES

By Babu Ram

1. Let $f(x)$ be a function defined by

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x, \tag{1.1}
\end{equation*}
$$

where $\left\{a_{n}\right\}$ is a sequence of positive coefficients.
We define a non-negative function $\Phi(x)=x \phi(x)$ such that $\Phi(x) / x^{1+\delta}$ is increasing when x is increasing from zero to infinity, where $\delta>0$ is a sufficiently small constant depending on Φ and that there exists a positive constant $k>1$, depending on Φ, such that $\Phi(x) / x^{k}$ is decreasing when x is increasing from zero to infinity. It follows that $\Phi^{\prime}(x)$ exists almost everywhere in any finite interval and that

$$
\begin{equation*}
(1+\delta) \phi(x)<\Phi^{\prime}(x)<k \phi(x) . \tag{1.2}
\end{equation*}
$$

Suppose further that $\Psi(x)=x \phi(x)$ is a non-decreasing positive function such that $\Psi(\mathrm{x}) / x^{1-\delta^{\prime}}$ is decreasing as x is increasing in $(0, \pi)$ for a sufficiently small constant $\delta^{\prime}>0$ depending on Ψ. It is clear that $\Psi^{\prime}(x)>0$, where $\Psi^{\prime}(x)$ exists almost everywhere in $(0, \pi)$ and that

$$
\begin{equation*}
\Psi^{\prime}(x) \leq\left(1-\delta^{\prime}\right)(x) . \tag{1.3}
\end{equation*}
$$

Shah [7] and Szasz [8] generalised the notion of decreasing null sequence in the form of quasi-monotonic sequence in the following fashion.
A sequence $\left\{a_{n}\right\}$ of positive numbers is said to be be quasi-monotone if

$$
a_{n+1} \leq a_{n}(1+\alpha / n)
$$

for some constant $\alpha \geq 0$ and all $n>n_{0}(\alpha)$. We may suppose α to be an integer. An equivalent definition is that $\left\{a_{n}\right\}$ is quasi-monotone if and only if $n^{-\beta} a_{n} \downarrow 0$ for some $\beta>0$.
An easy consequence of this definition is that every monotonic decreasing null sequence is also quasi-monotone. However, the converse need not be true.
2. Concerning the integrability of trigonometric series for L^{p} class, Hardy and Littlewood [5,6] established the following classical theorems.

THEOREM A. If $a_{n} \downarrow 0$ and $1<p<\infty$, then

$$
f(x) \in L^{p}(0, \pi)
$$

if and only if

$$
\sum_{n=1}^{\infty} n^{p-2} a_{n}^{p}<\infty .
$$

The theorem holds for sine series also.
THEOREM B. If $f(x) \geq 0$ and f decreases, $1<p<\infty$ and a_{n} are the Fourier cosine coefficients of f, then

$$
\sum_{n=0}^{\infty}\left|a_{n}\right|^{p}<\infty
$$

if and only if

$$
x^{p-2} f(x)^{p} \in L(0, \pi) .
$$

A similar result holds for sine series.
In 1956, extending Theorem A, Chen [2] proved the following theorem.
THEOREM C. Suppose that $a_{n} \downarrow 0$ and that $f(x)$ is defined by (1.1). Then for $p>1,0<r<1$,

$$
x^{-\gamma}[f(x)]^{p} \in L(0, \pi)
$$

if and only if

$$
\sum_{n=1}^{\infty} n^{\gamma+p-2} a_{n}^{p}<\infty .
$$

The result holds for sine series also. He further observed that Theorem C remains true even if a_{n} is ultimately positive and decreases steadily to zero as n tends to infinity.

Later on, Chen [4] proved the following theorem which generalizes not only the power-function multipliers but also the L^{p} classes.

THEOREM D. Let $f(x)$ be defined by (1.1), where $a_{n} \downarrow 0$. Then a necessary condition for

$$
\Phi[|f(x)|] / \Psi(x) \in L(0, \pi)
$$

is that

$$
\sum_{n=1}^{\infty} \frac{\Phi\left(n a_{n}\right)}{n^{2} \Psi(1 / n)}<\infty .
$$

It may be mentioned here that the sufficiency part of this theorem also holds [3], since the conditions imposed on Φ imply that $\Phi(x) / x$ is increasing as x increases from zero to infinity.
3. In the present paper we relax the condition $a_{n} \downarrow 0$ of Theorem D by assuming only the quasi-monotonicity of $\left\{a_{n}\right\}$. We also prove the sufficiency of Theorem D under a weaker hypothesis. In what follows we shall prove the following theorems.

THEOREM 1. Let $\left\{a_{n}\right\}$ be a positive sequence such that $\left\{n^{-\beta} a_{n}\right\}$ is monotonically decreasing for some non-negative integer β. Then a necessary condition for

$$
\Phi[|f(x)|] / \Psi(x) \in L(0, \pi)
$$

is that

$$
\sum_{n=1}^{\infty} \frac{\Phi\left(n a_{n}\right)}{n^{2} \Psi(1 / n)}<\infty
$$

where

$$
f(x) \sim \sum_{n=1}^{\infty} a_{n} \cos n x .
$$

THEOREM 2. Let $\left\{a_{n}\right\}$ be a positive, null sequence such that $\left\{n^{-\beta} a_{n}\right\}$ is monotonically decreasing for some non-negative integer β. If

$$
\begin{align*}
& \sum_{k=n}^{\infty}\left|a_{k}-a_{k+1}\right| \leq K^{*} a_{n}, \tag{3.1}\\
& \sum_{n=1}^{\infty} \frac{\Phi\left(n a_{n}\right)}{n^{2} \Psi(1 / n)}<\infty, \tag{3.2}
\end{align*}
$$

then
where

$$
\begin{aligned}
\Phi[|f(x)|] / \Psi(x) & \in L(0, \pi) \\
f(x) & \sim \sum_{n=1}^{\infty} a_{n} \cos n x .
\end{aligned}
$$

It is clear that if $a_{n} \downarrow 0$, then $\left\{a_{n}\right\}$ is a quasi-monotonic sequence and that (3.1) holds. Hence Theorem 2 is a generalization of the sufficiency part of Theorem D.
4. We shall require the following lemmas for the proofs of theorems.

LEMMA 1 [3]. Let $\Phi(x)$ be the function defined in $\S 1$ and let $a_{k} \geq 0$. Then
*K denotes a positive constant not necessarily the same at each occurence.

$$
\sum_{n=1}^{\infty} \frac{\Phi\left(\sum_{k=1}^{n} a_{k}\right)}{\Phi(n)} \leq K(\Phi) \sum_{n=1}^{\infty} \frac{\Phi\left(n a_{n}\right)}{\Phi(n)}
$$

where $K(\Phi)$ is a constant depending on Φ.
LEMMA 2 [4]. Let $a \geq 0$,

$$
F(x)=\int_{0}^{x} f(t) d t(f(t) \geq 0)
$$

Then

$$
\int_{0}^{a} \frac{\Phi[F(x) / x]}{\Psi(x)} d x \leq K(\Phi) \int_{0}^{a} \frac{\Phi[f(x)]}{\Psi(x)} d x
$$

where $K(\Phi)$ is a positive constant, depending on Φ.
LEMMA 3. Let $a \geq 0$,

$$
F(x)=\frac{1}{x} \int_{0}^{x} f(t) d t \quad(f(t) \geq 0)
$$

Then

$$
\int_{0}^{a} \frac{\Phi[F(x) / x]}{\Psi(x)} d x \leq K(\Phi) \int_{0}^{a} \frac{\Phi[f(x) / x]}{\Psi(x)} d x .
$$

PROOF. Let f_{n} and F_{n} be defined by

$$
\begin{align*}
& f_{n}(x)= \begin{cases}f(x) & (1 / n \leq x \leq a) \\
0 & (0 \leq x<1 / n)\end{cases} \tag{4.1}\\
& F_{n}(x)=\frac{1}{x} \int_{0}^{x} f_{n}(t) d t
\end{align*}
$$

Integration by parts yields

$$
\begin{aligned}
\int_{0}^{a} \frac{\Phi\left[F_{n}(x) / x\right]}{\Psi(x)} d x & =\frac{a \Phi\left[F_{n}(a) / a\right]}{\Psi(a)}+\int_{0}^{a} \frac{F_{n}(x) \Phi^{\prime}\left[F_{n}(x) / x\right]}{x \Psi(x)} d x \\
& +\int_{0}^{a} \frac{x \Psi^{\prime}(x) \Phi\left[F_{n}(x) / x\right]}{[\Psi(x)]^{2}} d x \\
& -\int_{0}^{a} \frac{F_{n}(x) \Phi^{\prime}\left[F_{n}(x) / x\right]}{\Psi(x)} d x .
\end{aligned}
$$

Differentiating (4.2) with respect to x we have

$$
\begin{equation*}
F_{n}^{\prime}(x)=\frac{f_{n}(x)}{x}-\frac{F_{n}(x)}{x} \tag{4.3}
\end{equation*}
$$

Therefore by (4.1), (4.2) and (4.3) we have

$$
\begin{aligned}
\int_{0}^{a} \frac{\Phi\left[F_{n}(x) / x\right]}{\Psi(x)} d x & =2 \int_{0}^{a} \frac{F_{n}(x) \Phi^{\prime}\left[F_{n}(x) / x\right]}{x \Psi(x)} d x \\
& +\int_{0}^{a} \frac{x \Psi^{\prime \prime}(x) \Phi\left[F_{n}(x) / x\right]}{[\Psi(x)]^{2}} d x \\
& -\int_{1 / n}^{a} \frac{f(x) \Phi^{\prime}\left[F_{n}(x) / x\right]}{x \Psi^{\prime}(x)} d x
\end{aligned}
$$

Hence by the definition of $\Phi(x)$ and (1.2) it follows that

$$
\begin{align*}
& \int_{0}^{a} \frac{\Phi\left[F_{n}(x) / x\right]}{\Psi(x)} d x \geq 2(1+\delta) \int_{0}^{a} \frac{\Phi\left[F_{n}(x) / x\right]}{\Psi(x)} d x \tag{4.4}\\
&-k \int_{1 / n}^{a} \frac{f(x) \phi\left[F_{n}(x) / x\right]}{x \Psi(x)} d x
\end{align*}
$$

Let $t \geq 1$. Then, $\phi(x)$ being increasing, we have

$$
\begin{align*}
& \frac{f(x)}{x} \phi\left\{F_{n}(x) / x\right\} \tag{4.5}\\
& =t^{-1}\left[t \frac{f(x)}{x} \phi\left\{F_{n}(x) / x\right\}\right] \\
& \leq t^{-1} \operatorname{Max}\left[t \frac{f(x)}{x} \phi\{t f(x) / x\}, \quad \phi\left\{F_{n}(x) / x\right\}\left\{F_{n}(x) / x\right\}\right] \\
& \leq t^{-1}\left[\Phi(t f(x) / x\}+\Phi\left\{F_{n}(x) / x\right\}\right] \\
& \leq t^{k-1} \Phi[f(x) / x]+t^{-1} \Phi\left[F_{n}(x) / x\right] .
\end{align*}
$$

Thus, by virtue of (4.5) we obtain

$$
\left(1+2 \delta-k t^{-1}\right) \int_{0}^{a} \frac{\Phi\left[F_{n}(x) / x\right]}{\Psi(x)} d x \leq k t^{k-1} \int_{0}^{a} \frac{\Phi[f(x) / x]}{\Psi(x)} d x
$$

Now taking an arbitrary fixed and sufficiently large value of t, in order to make $1+2 \delta-k t^{-1}>0$, we observe that

$$
\int_{0}^{a} \frac{\Phi\left[F_{n}(x) / x\right]}{\Psi(x)} d x \leq K(\Phi) \int_{0}^{a} \frac{\Phi[f(x) / x]}{\Psi(x)} d x
$$

Since $K(\Phi)$ is independent of n, taking the superior limit on the left we have

$$
\int_{0}^{a} \frac{\Phi[F(x) / x]}{\Psi(x)} d x \leq K(\Phi) \int_{0}^{a} \frac{\Phi[f(x) / x]}{\Psi(x)} d x .
$$

Thus the lemma 3 is proved.
LEMMA 4. Let $\Phi[|f(x)|] / \Psi(x) \in L(0, \pi)$, where

$$
f(x) \sim \sum_{n=1}^{\infty} a_{n} \cos n x
$$

Assume that the Fourier coefficients a_{n} of f are non-negative. Define

$$
\begin{equation*}
A(n)=\sum_{j=[n / 2]}^{n} a_{j} . \tag{4.6}
\end{equation*}
$$

Then
(4.7)

$$
\sum_{n=1}^{\infty} \frac{\Psi[A(n)]}{n^{2} \Psi^{-}(1 / n)}<\infty .
$$

PROOF. Without any loss of generality we assume that $a_{0}=0$. Let

$$
\begin{aligned}
& f_{1}(x)=\int_{0}^{x} f(u) d u \\
& f_{2}(x)=\int_{0}^{x} f_{1}(u) d u .
\end{aligned}
$$

Then by virtue of integration of Fourier series of f,

$$
\begin{aligned}
& f_{2}(x)=\sum_{j=1}^{\infty} a_{j}(1-\cos j x) j^{-2} \\
& \geq \sum_{j=[n / 2]}^{n} a_{j}(1-\cos j x) j^{-2}
\end{aligned}
$$

for any integer n.
Using the inequality $(1-\cos n x) \geq \frac{K}{2}(n x)^{2}$ for $\pi /[4(n+1)] \leq x \leq \pi /(4 n)$, we obtain

$$
\begin{equation*}
A(n) \leq K n^{2} f_{2}(x) \tag{4.8}
\end{equation*}
$$

Then, by means of lemmas 2 and 3 , it follows that

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\Phi[A(n)]}{n^{2} \Psi(1 / n)} & \leq K \sum_{n=1}^{\infty} \frac{\Phi\left[n^{2} f_{2}(x)\right]}{n^{2} \Psi(1 / n)} \\
& \leq K \sum_{n=1}^{\infty} \int_{\pi /[4(n+1)]}^{\pi /(4 n)} \frac{\Phi\left[x^{-2} f_{2}(x)\right]}{\Psi(x)} d x
\end{aligned}
$$

$$
\begin{aligned}
& =K \int_{0}^{\pi / 4} \frac{\Phi\left[x^{-2} \int_{0}^{x} f_{1}(u) d u\right]}{\Psi(x)} d x \\
& \leq K(\Phi) \int_{0}^{\pi / 4} \frac{\Phi\left[x^{-1}\left|f_{1}(x)\right|\right]}{\Psi(x)} d x \\
& =K(\Phi) \int_{0}^{n / 4} \frac{\Phi\left[x^{-1} \int_{0}^{x}|f(u)| d u\right]}{\Psi(x)} d x \\
& \leq K(\Phi) \int_{0}^{\pi / 4} \frac{\Phi[|f(x)|]}{\Psi(x)} d x \\
& <\infty .
\end{aligned}
$$

This completes the proof of Lemma 4.

5. Proof of Theorem 1

Since $\left\{n^{-\beta} a_{n}\right\}$ is monotonically decreasing, we have

$$
\begin{aligned}
a_{n} & =a_{n} n^{-\beta} n^{\beta} \\
& \leq K n^{\beta-1} \sum_{j=[n / 2]}^{n} j^{-\beta} a_{j} \\
& \leq K n^{-1} \sum_{j=[n / 2]}^{n} a_{j} \\
& =K n^{-1} A(n) .
\end{aligned}
$$

Hence, by virtue of Lemma 4, we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\Phi\left(n a_{n}\right)}{n^{2} \Psi(1 / n)} & \leq K \sum_{n=1}^{\infty} \frac{\Phi[A(n)]}{n^{2} \Psi(1 / n)} \\
& <\infty
\end{aligned}
$$

Theorem 1 is thus established.

6. Proof of Theorem 2

The condition (3.1) implies that $\left\{a_{n}\right\}$ is sequence of bounded variation. Hence the Fourier series of f converges for $x>0[9$, Vol. 1, p. 4]. That is,

$$
\begin{aligned}
f(x) & =\sum_{k=1}^{\infty} a_{k} \cos k x \\
& =\sum_{k=1}^{\infty} a_{k} \cos k x+\sum_{k=n+1}^{\infty} a_{k} \cos k x .
\end{aligned}
$$

Babu Ram

If $D_{n}(x)$ denotes the Dirichlet's kernel, then using partial summation we obtain

$$
\sum_{k=n+1}^{\infty} a_{k} \cos k x=\sum_{k=n}^{\infty}\left(a_{k}-a_{k+1}\right) D_{k}(x)-a_{n} D_{n}(x) .
$$

Hence, for any integer n, we have

$$
\begin{aligned}
|f(x)| & \leq S_{n}+\sum_{k=n}^{\infty}\left|a_{k}-a_{k+1}\right|\left|D_{k}(x)\right|+\left|a_{n}\right|\left|D_{n}(x)\right| \\
& =S_{n}+o(1 / x) \sum_{k=n}^{\infty}\left|a_{k}-a_{k+1}\right|+o\left(x^{-1} a_{n}\right),
\end{aligned}
$$

where

$$
S_{n}=\sum_{k=1}^{n} a_{k}
$$

Then, on account of (3.1), it follows that

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \frac{\Phi[|f(x)|]}{\Psi(x)} d x \\
= & \sum_{n=2}^{\infty} \int_{\pi /(n+1)}^{\pi / n} \frac{\Phi[|f(x)|]}{\Psi(x)} d x \\
\leq & \sum_{n=2}^{\infty} \int_{\pi /(n+1)}^{\pi / n} \frac{\left[S_{n}+o(1 / x) o\left(a_{n}\right)+o(1 / x) o\left(a_{n}\right)\right]}{\Psi(x)} d x \\
\leq & K \sum_{n=2}^{\infty} \frac{\Phi\left[S_{n}+n a_{n}\right]}{n^{2} \Psi(1 / n)} .
\end{aligned}
$$

Since $\left\{\mathrm{n}^{-\beta} a_{n}\right\}$ is a monotonically decreasing sequence, we have

$$
\begin{aligned}
S_{n}=\sum_{k=1}^{n} a_{k} & =\sum_{k-1}^{n} k^{-\beta} a_{k} k^{\beta} \\
& \geq n^{-\beta} a_{n} \sum_{k=1}^{n} k^{\beta} \\
& \geq K n^{-\beta} a_{n} n^{\beta+1} \\
& =K n a_{n} .
\end{aligned}
$$

Therefore we have

$$
\int_{0}^{\pi / 2} \frac{\Phi[|f(x)|]}{\Psi(x)} d x \leq K \sum_{n=2}^{\infty} \frac{\Phi\left(S_{n}\right)}{n^{2} \Psi(1 / n)}
$$

Now $n^{2} \Psi(1 / n)$ has the same properties as that of $\Phi(n)$.
Therefore, using 1, we have

$$
\int_{0}^{\pi / 2} \frac{\Phi[|f(x)|]}{\Psi(x)} d x \leq K(\Phi) \sum_{n=2}^{\infty} \frac{\Phi\left(n a_{n}\right)}{n^{2} \Psi(1 / n)}<\infty
$$

Similarly it can be shown that

$$
\int_{\pi / 2}^{\pi} \frac{\Phi[|f(x)|]}{\Psi(x)} d x<\infty
$$

This completes the proof of Theorem 2.
I am grateful to Prof. Y. M. Chen for going through the manuscript and his kind encouragement.

Kurukshetra University, Kurukshetra, India

REFERENCES

[1] R.Askey and S.Wainger, Integrability theorems for Fourier series, Duke Math. Jour. 33 (1966), 223-228.
[2] Y.M. Chen, On the integrability of functions defined by trigonometrical series, Math. Z. 66 (1956), 9-12.
[3] Y.M.Chen, Some further asymptotic properties of Fourier constants, Math. Z. 69 (1958), 105-120.
[4] Y.M.Chen, On a maximal theorem of Hardy and Littlewood and theorems concerning. Fourier constants, Math. Z. 69 (1958), 418-422.
[5] G.H.Hardy and J.E. Littlewood, Some new properties of Fourier constants, Math. Annalen, 97(1926), 159-209.
[6] G.H.Hardy and J.E. Littlewood, Some new properties of Fourier constants, J.London Math. Soc. 6 (1931), 3-9.
[7] S.M.Shah, Trigonometric series with quasi-monotone coefficients, Proc. Amer. Math. Soc. 13 (1962), 266-273.
[8] O. Szasz, Quasi-monotone-series, Amer. J. Math. 70 (1948), 203-206
[9] A. Zygmund, Trigonometric series, 2nd Ed., Cambridge University Press, 1959.

