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THE RADIUS OF CONVEXITY OF SOME REGULAR FUNCTIONS

By Cheng-Shu Yu* and Ming-Po Chen*

1. Introduction and statement of results

Let S denote the classs of functions f(z) regular and univalent in the open unit
disk E={z: |z| <1} which are normalized by the conditions f(0)=0 and f(0)=1.
Let S(e) denote the subclass of functions f(z) in S satisfyving

(.1 - Relzf'(2)/f(2)} > a,
for all z in E, where 0<<e¢<l. A function f(2) in S(a) is said to be starlike of
order ¢ and a function in 'S(0) is called starlike. Let K(e¢) denote the subclass of

functions f(z) in S satisfying

(1.2) Re{zf"(2)/f(2)} +1>a,
for all z in £, where 0<e<1. A function f(z) in K(ag) 1s said to be convex of

order ¢ and a function in K(0) is called convex.
Let M(a) denote the subclass of functions f(z) in S satisfying

z2f (2) 1 1
(1.3) ll"f(;z) 2a l <2

for all z in E, where 0<<e<1. It is clearly that a function in M(a) is starlike
and M(0) i1s the same as the class S(0). The class M (-%—) has been investigated
by R.Singh [2, 3]. |

In this paper we will prove the following theorems.

THEOREM 1. If 0<a<b<l1, f(2) is in S(a), and

(1- 4) f(2)22+am+13m+1+am+23m+2+'":

m=>1, then f(z) is convex of order b in the region |z| <7'01/ " where ro is the smal-

lest positive root of the equation

(1.5) Q(t)-=_(4czz+b+1 —4a—2czb)t2+ (da+2am—2ab—2m—2)t+(1—5b)=0.
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This result is sharp.

THEOREM 2. If 0<ea, b<1, f(2) is in M(a), and

(1.6) If(z)=z+am+1zm+1+am+zzm+2+---, |

m=>1, then f(z) is convex of order b in the region |z| <RV ", where R is the smal-

lest positive root of the equation

(1.7) H(z‘)E(l—l—bc)tz—(2+m—l—mc+bc—b)t+(1—b):0, c=1-2a.
Thts result is sharp.

2. We need the following lemmas

LEMMA 1. [1, Lemma 1] If p(z)=1+c 2"+ cmHzm“—l- o 45 analytic and
satisfies Re(p(2))>a, 0<a<l, m>1. for |1z|<1. Ther we have

(2.1) p(RD=A+2e—1)2"u(2))/(1+2"u(2)), for 12| <1,
where u(z) is analytic and \u(2)|<1 for |z| <1.

LEMMA 2. [1,p. 240 Lemma 2,3 and inequality (6)].
Under the hypothesis of Lemma 1 we have for |z| <1,

(2.2) lzp'(2)/p(2)|<2m|z|™(1~a)/ {(1—|zI™)[1+(1—2a)|2|"]}.
(2.3) Re(p(2))=[1+Qa—1)z|"1/(1+12|™), and
(2.4) |zp'(2)| <2m|z]™ [Re(p(2)) —al /(1—|z]™).

LEMMA 3. Let p(z)=1—|—dmzm—l—d " +12m+1+ -« be analytic and safisfy [ p(z)—glg t
<§1&_, 0<a<l, m>1, for |z|<1. Then we have for |z} <1

(2.5) (1—121")/+clz]™)<Re(p(2))< 1 p() 1 <1+ |2z|1™)/(1—c|2|™),
where c=1—2a. '

PROOF. Since l p(z)—-z-lg ] <—2% if and only if Re(1/p(2))> a.

Hence by Lemma 1, we can write p(z) as

(2.6) 2D=Q+2"u(2))/(1—cz"u(z)), where c=1~2a, also —1<c<1.
we have

(5(2)~1)/(ep(D)+1)| = |2"u(2) | <|z|™ for |z|<L.
Therefore |

15(2) 12— 2Re(p(2))+1< 212 (21 p(2) |2 +2¢ Re(p(2))-+1),



The Radius of Convexity of Some Regular Functions - | 85

2m
or [p(2) 12~ 2ReCp()LefzL Ty 1=]zl 7
1—c?|z|™"  1-¢%z]

After completing the square and simplifying, we have

1+c|z|2""{ <1+c)lzl
IO R TN T

p(z)—-

Hence we obtain
(1-2")/(14+e2™)<Re(p())<|p() | <1+ 121™)/(1—clz|™).

LEMMA 4. Uwnder the hypothesis of Lemma 3 we have for |z |<1
2.7 |27 (2)/pC) <L+ mlz|”/ [(A+clz]™)(1=[2]™)].

PROOF. Logarithmic differentiation both sides of equation #(2)p(2)=1, vields

z2h'(z) _ zp'(z)
mz) — plz)

Since Re(1/5(2))>a, therefore Re(h(2))>a, hence from Lemma 2 we get our
inequality (2. 7).

3. Proof of Theorem 1

By our assumptions let

G.1 z2f’(2)/f(2)=1~a)p(2)+a. .
then p(z) is analytic in E satisfies Re(p(z))>0 and is of the form
(3.2) p(z)=1+cmzm+cm+lzm+1+---.

for all z in E.
Differentiating (3.1) we have

27z _ 2f(z) | (Q—a)zp’'(2) _ . (d=a)zp’(z)
(3.3) 1 f,-(z) — f(.a‘?.') + = (1 G)ﬁ( )__L_a g+(1 G)ﬁcz) (l_d)p(z)‘l"a .

Therefore f(z) will be convex of order ¢, namely 1-+Re(zf”(2)/f(z))>b, if

(3.4) (a—8)+(1—a)p(z)+- <(11— ‘a‘gﬁ}fa 0.

From (2.3) and (2.4) with ¢=0 we know that (3.4) will hold provided

2 m
(czf-b)+(1—cz)Re(p(z))[1— a+(1—2$t{/((11:tg/)(1+t)} ]>O, |z| =¢, namely
(3.5) (e—b)+(1—- cz)Re(p(z))[ = t){(ngt) 57 1] ]>O,

where T(t)=(1~-22)"+(2a—2m—2)t+1.
Since 7°(0)=1>0, T(1)=-2m<0, therefore T'(¢)=0 has exactly one positive root
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between 0 and 1. Let 7, be this positive root. Then 0<7,<1 and T()>0 for
0<t<7;.

Hence using (2.3) we see, provided 0<¢<z,, that (3.5) will hold if

1—1 T ~
1 e.,
(3.7) QD =(a=5)(1+8) [(2a—1)t+1] +(1—a) T ()=

(4d" — 4a-+1~—2ab-+b)¢ + (4a+2am— 2ab—2m—2)t-+(1~5)> 0.
!ince a<<h, therefore Q(r)=(a—-b)(1+7,)[(2e—1)r+1]<0, also Q(0)=1-5>0,

hence Q(#)=0 has a positive root between O and 7. If », is the smallest positive

root of Q(¢)=0, then 0<7,<r, and Q({)>0 for 0£Iz|m<ro. The inequality (8.4)

is thus seen to be satisfied if z<r(1}/ " which means that f(2) 1s starlike of order

b in the region [z] <r; -

To see that the result is sharp, let us consider the function f(z)=z(1—z")2~2/m..
It is clearly that f(z) belongs to S(e) and

7D o T
f(2) (1—-2)" [14(1—22)"]

Thus {zf”(2)/f'(2)} +1-6=0 for z-——(—:ro)l/ . Hence f(z) is not convex of order
b in any disk [z| <rl/ " if > 7, This completes the the proof of Theorem L.

For special case of this theorem when ¢=50=0, since Q(f)zz‘z—z(m+ Di+1,
therefore we have the following result which is well-known when m=1.

COROLLARY 1. If f(2) is starlike in E and is of the form f(z)=z+a +lzm+1

1
—l—am_,_'2zm+2—l— o, m>1, then f(2) is convex in the region lzlm<m+l—(m2+2m)'2'-

This result is sharp.

4. Proof of Theorem 2

Put zf’(2)/f(z)=p(z), then we have, on differentiation that

@) @ @D s W@
(4D R T e PP TG

Since f(z)EM(a), namely . p(z)—-% \ < ?15, therefore from (2.5), (2.7) and

(4.1) we know that f(2) is convex of order &, mnamely 1+Re(zf”(2)/f(2))>b, if

1=t (14c)mi
(4.2) 1+ct (1—z)(1+ct)">b'
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or
(4.3) HO=(1—1)°=(14+)mt—b(1—)(1+ct)
=(14+b0)t° — (24 m+me--be—b)i--(1—5)>0,
where t=1z]" and ¢=1-2a.

Since H(0)=1-56>0, H(1)=—(m+mc) <0, and 1+bc>0, therefore H(#)=0 has:
two positive roots and the smallest of these two roots is between 0 and 1. Let R
be this smallest root, then H(#)>0, namely f(¢) is convex of order 4, for 0<<|z|™
<R, this completes the proof of Theorem 2.

For sharpness, let us consider the function

f (z):{z exp(2" /m) for ¢=0
z{l—czm} —(e)/em for ¢=40.
It is easy to show that f(z2)&M(a), and
1. 20C2) b::[zzm-(2+m-—b)(—zm)+(1—b)]/(1+zm), for ¢=0,
f2) H(—=2")/(1+2")(1—¢2™), for ¢=20.

This show that ocur function f(z) is not convex of order & in any disk |z| <R’ if

R’ exceeds R.
Theorem 2 reduces to a result of R. Singh 1n [2] and [3] as a special case

when ¢=0 and m=1.
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