Kyungpook Math. J. Volume 15, Number 1 June, 1975

A NOTE ON PROXIMITIES AND PAIRWISE REGULAR SPACES

By M.K. Singal and Sunder Lal

1. Introductory concepts

Let X be a non-empty set. For a binary relation δ defined on P(X), the power set of X, consider the following axioms:

1. $(A, B) \in \delta \iff (B, A) \in \delta$,

- 2. $(A \cup B, C) \in \delta \iff (A, C) \in \delta$ or $(B, C) \in \delta$,
- 2' $(A, B \cup C) \in \delta \iff (A, B) \in \delta$ or $(A, C) \in \delta$,
- 3. $A \cap B \neq \phi \Longrightarrow (A, B) \in \delta$,
- 4. $(A, B) \in \delta \Longrightarrow A \neq \phi \neq B$,
- 5. $(A, B) \notin \delta \Longrightarrow \exists E \in P(X)$ such that $(A, E) \notin \delta$ and $(X E, B) \notin \delta$,
- 5'. $(x, B) \notin \delta \Longrightarrow \exists E \in P(X)$ such that $(x, E) \notin \delta$ and $(X E, B) \notin \delta$,
- 5". $(A, B) \in \delta$ and $(b, C) \in \delta$ for all $b \in B \Longrightarrow (A, C) \in \delta$.

A relation δ satisfying 1, 2, 3, 4 and 5 above is said to be an *EF-proximity*. δ satisfying 2, 2', 3, 4 and 5 is called a *quasi-proximity*. If δ satisfies 1, 2, 3, 4 and 5' then we call it a *local proximity* where as δ satisfying 2, 2', 3, 4 and 5' is termed as a *PR-proximity*. Similarly if δ satisfies the set of axioms 1, 2, 3, 4 and 5'' (respectively 2, 2', 3, 4 and 5'') then it is called an *LO*-(respectively an *LE*-)

proximity. If δ satisfies the axiom

6. $(x, y) \in \delta \Longrightarrow x = y$,

then it is said to be *separated*.

If δ is any proximity on X, then δ^{-1} defined by $(A, B) \in \delta^{-1}$ iff $(B, A) \in \delta$,

is also a proximity of the same type. We call δ^{-1} the conjugate of δ . To each δ , there is associated a topology $\mathscr{T}(\delta) = \{A \subset X | x \in A \Longrightarrow (x, X - A) \notin \delta\}$. We call $\mathscr{T}(\delta)$, the topology *induced* by δ . It is known that if δ is an *EF*-(respectively Local, *LO*-) proximity then $\mathscr{T}(\delta)$ is completely regular(respectively regular, R_0) and conversely given any completely regular(respectively regular, R_0) topology \mathscr{T} on X it is possible to define an *EF*-(respectively local, *LO*-) proximity on X such that $\mathscr{T}(\delta) = \mathscr{T}$. If δ is a quasi (respectively, *PR*-, *LE*-) proximity on X, then $\mathscr{T}(\delta)$ need not satisfy any separation axiom.

M.K. Singal and Sunder Lal

26

• •

given any topology \mathscr{T} on X it is possible to define a quasi-(*PR*-, *LE*-) proximity on X such that $\mathscr{T}(\delta) = \mathscr{T}, \mathscr{T}(\delta)$ is T_1 iff δ is separated.

Given two proximities δ_1 and δ_2 on X, we say δ_1 is *finer* than δ_2 and write $\delta_1 \ge \delta_2$ if $(A, B) \in \delta_1 \Longrightarrow (A, B) \in \delta_2$. It is known that finer proximities induce finer topologies.

If \mathscr{T}_1 and \mathscr{T}_2 are two topologies on X, then the ordered triple $(X, \mathscr{T}_1, \mathscr{T}_2)$ is called a bitopological space [1]. It is said to be (a) *pairwise* R_0 [5] if for every $x \in G \in \mathscr{T}_1, \mathscr{T}_2$ -cl $\{x\} \subset G$ and $x \in G \in \mathscr{T}_2 \Longrightarrow \mathscr{T}_1$ -cl $\{x\} \subset G$. (b) *pairwise regular* [1] if every point of X has \mathscr{T}_1 neighbourhood base consisting of \mathscr{T}_2 -closed sets and a \mathscr{T}_2 neighbourhood base consisting of \mathscr{T}_1 -closed sets; (c) *pairwise completely regular* [3] if for each \mathscr{T}_i closed set F and $x \in X - F$ there exists $f: X \longrightarrow$ [0, 1] which is, \mathscr{T}_i -upper semi-continuous (usc) and \mathscr{T}_i -lower semi-continuous (lsc) such that f(x)=0 and f(F)=1 ($i \neq j, i, j=1, 2$): (d) *pairwise normal* [1] if for every \mathscr{T}_1 -closed set A and \mathscr{T}_2 -closed set B with $A \cap B = \phi$ there exist a \mathscr{T}_2 open set U containing A and \mathscr{T}_1 -open set V containing B such that $U \cap V = \phi$.

Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a bitopological space and f a real valued function on X which is \mathcal{T}_1 -use and \mathcal{T}_2 -lse, then $\{x \in X : f(x) \leq 0\}$ is called a \mathcal{T}_2 -zero set $(w.r.t.\mathcal{T}_1)$ and $\{x \in X : f(x) \geq 0\}$ is called a \mathcal{T}_1 -zero set $(w.r.t.\mathcal{T}_2)$. The set $\{x \in X : f(x) > 0\}$ is called a \mathcal{T}_2 -cozero set $(w.r.t.\mathcal{T}_1)$ and $\{x \in X : f(x) < 0\}$ is called a \mathcal{T}_1 -cozero set $(w.r.t.\mathcal{T}_2)$. Similar definitions are made in case when f is \mathcal{T}_1 -lse and \mathcal{T}_2 -use. A bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is pairwise completely regular iff \mathcal{T}_1 -zero sets

form a base for \mathcal{T}_1 -closed sets and \mathcal{T}_2 -zero sets form a base for \mathcal{T}_2 -closed sets.

2. Pairwise R_0 and pairwise regular spaces

If δ is an *LE*-(Quasi-or *PR*-) proximity on *X*, then $(X, \mathcal{T}(\delta), \mathcal{T}(\delta^{-1}))$ is a bitopological space. Lane [4] has shown that this bitopological space is pairwise completely regular if δ is a quasi-proximity. He also proved that given a pairwise completely regular space $(X, \mathcal{P}, \mathcal{O})$, there exists a quasi-proximity δ on *X* such that $\mathcal{T}(\delta) = \mathcal{P}$ and $\mathcal{T}(\delta^{-1}) = \mathcal{Q}$. A proximity satisfying the later condition is said to be a *compatible* proximity on $(X, \mathcal{P}, \mathcal{O})$. Here we consider similar problem when δ is an *LE* and a *PR*- proximity.

THEOREM 2.1. If δ is an LE-proximity, when $(X, \mathcal{T}(\delta), \mathcal{T}(\delta^{-1}))$ is necessarily pairwise R_0 . Conversely a compatible LE-proximity can be defined on a pairwise R_0 -space $(X, \mathcal{P}, \mathcal{Q})$ by setting

A Note on Proximities and Pairwise Regular Spaces

27

$(A, B) \in \delta$ iff \mathscr{Q} -cl $A \cap \mathscr{P}$ -cl $B \neq \phi$.

PROOF. That $(X, \mathcal{F}(\delta), \mathcal{F}(\delta^{-1}))$ is pairwise R_0 follows from the fact that

 $(x, y) \in \delta \iff (y, x) \in \delta^{-1}$ (Theorem 3.3 of [2]). To see that δ defined above is an *LE*-proximity it is sufficient to verify the axiom 5" only. Let $(A, B) \in \delta$ and $(b, C) \in \delta$ for each $b \in B$. Then \mathscr{Q} -cl $A \cap \mathscr{P}$ -cl $B \neq \phi$ and \mathscr{Q} -cl $\{b\} \cap P$ -cl $C \neq \phi$ for each $b \in B$, i.e., there exists a $c \in \mathscr{P}$ -cl C such that $c \in \mathscr{Q}$ -cl $\{b\}$. Since Xis pairwise R_0 we have $b \in \mathscr{P}$ -cl $\{c\} \subset \mathscr{P}$ -cl C and hence \mathscr{Q} -cl $A \cap \mathscr{P}$ -cl $C \neq \phi$ showing that $(A, C) \in \delta$. Since $(x, A) \in \delta$ iff \mathscr{Q} -cl $\{x\} \cap \mathscr{P}$ -cl $A \neq \phi$ iff $x \in \mathscr{P}$ -cl A, it follows that $\mathscr{P} = \mathscr{T}(\delta)$. Similarly $\mathscr{Q} = \mathscr{T}(\delta^{-1})$.

THEOREM 2.2. Let(X, \mathscr{P}, \mathscr{Q}) be a pairwise R_0 space and let δ_1 be any compatible LE-proximity on X, then

1. $(A, B) \in \delta_1$ iff $(Q-cl A, P-cl B) \in \delta_1$,

2. δ_1 is coarser than the LE-proximity δ defined in Theorem 3.1.

PROOF. (1) is simple. For (2) $(A, B) \in \delta \Leftrightarrow \mathscr{Q}$ -cl $A \cap \mathscr{F}$ -cl $B \neq \phi \Longrightarrow (\mathscr{Q}$ -cl A, \mathscr{F} -cl $B) \in \delta_1 \Leftrightarrow (A, B) \in \delta_1$.

THEOREM 2.3. If δ is PR-proximity on X, then $(X, \mathcal{T}(\delta), \mathcal{T}(\delta^{-1}))$ is necessarily pairwise regular. Conversely a compatible PR-proximity δ_1 can be defined on pairwise regular space $(X, \mathcal{F}, \mathcal{Q})$ by setting,

 $(A,B) \in \delta_1 \text{ iff } \mathscr{Q}\text{-cl } A \cap \mathscr{G}\text{-cl } B \neq \phi.$

PROOF. Let $A \in \mathscr{T}(\delta)$ and $x \in A$. Then $(x, X - A) \notin \delta$ and so there exists $B \subset X$

such that $(x, X-B) \notin \delta$ and $(B, X-A) \notin \delta$ i.e.,

 $x \notin \mathscr{T}(\delta)$ -cl (X-B) and $\mathscr{T}(\delta^{-1})$ -cl $B \subset A$. Therefore $x \in \mathscr{T}(\delta)$ -int $B \subset \mathscr{T}(\delta^{-1})$ -cl $B \subset A$. Similarly if $A \in \mathscr{T}(\delta^{-1})$ and $x \in A$, then there exists $B \subset X$ such that $x \in \mathscr{T}(\delta^{-1})$ -int $B \subset \mathscr{T}(\delta)$ -cl $B \subset A$.

To prove that δ_1 defined above is a *PR*-proximity it is sufficient to verify (5') only. Let $(x, A) \notin \delta_1$, so that $x \notin \mathscr{P}$ -clA. Let $B \subset X$ be such that $B \in \mathscr{P}$, $x \in B \subset \mathscr{Q}$ -cl $B \subset X - \mathscr{P}$ -cl A. Clearly $(x, X - B) \notin \delta_1$ and $(B, A) \notin \delta_1$. The compatibility follows from Theorem 2.2 and the fact that every pairwise regular space is pairwise R_0 .

REMARK 2.1. Every pairwise completely regular space is pairwise regular and therefore admits of a compatible PR-proximity. This also follows from the fact

M.K. Singal and Sunder Lal

.

28

•

•

that every quasi-proximity is a PR-proximity. But a completely regular space admits of compatible PR-proximities which are not quasi-proximities. For example on a pairwise regular space which is not pairwise normal δ_1 is a PR-proximity which is not a quasi-proximity (Theorem 3.10 of [2]). One more such PRproximity is constructed in Theorem 2.7.

REMARK 2.2. Every pairwise regular space is pairwise R_0 and therefore admits of a compatible *LE*-proximity. This also follows from the fact that on a pairwise regular space δ_1 defined in Theorem 2.3 is an *LE*-proximity.

We now show the existence of a PR-proximity on a pairwise regular space which is not an LE-proximity.

THEOREM 2.4. On a pairwise regular space $(X, \mathscr{P}, \mathscr{Q})$, $(A, B) \notin \delta_2$ iff $\exists U \in \mathscr{P}$, $V \in \mathscr{Q} : A \subset U, B \subset V$ and $U \cap V = \phi$ defines a compatible PR-proximity.

PROOF. Again it is sufficient to verify the axiom 5' only. Let $(x, A) \notin \delta_2$ and let $U \in \mathscr{P}$, $V \in \mathscr{Q}$ be such that $x \in U$, $A \subset V$ and $U \cap V = \phi$. Let $U_1 \in \mathscr{P}$ and $V_1 \in \mathscr{Q}$ be such that $x \in U_1$, $X - U \subset V_1$ and $U_1 \cap V_1 = \phi$. Clearly $(x, X - U) \notin \delta^2$ and since $U \in \mathscr{P}$ is such that $U \cap V = \phi$, $A \subset V \in \mathscr{Q}$, $(U, A) \notin \delta_2$. For compatibility part let $x \in A \in \mathscr{T}(\delta_2)$. Then $(x, X - A) \notin \delta_2$ and therefore there are sets $U \in$ $\mathscr{P}, V \in \mathscr{Q}$ such that $x \in U \subset X - V \subset A$. Therefore $\mathscr{T}(\delta_2) \subset P$. If $A \in \mathscr{P}$ and $x \in A$, then by pairwise regularity we can separate x and X - A by \mathscr{P} and \mathscr{Q} -open sets and therefore $(x, X - A) \notin \delta_2$.

REMARK 2.3. Let $(X, \mathcal{P}, \mathcal{Q})$ be a bitopological space. If δ is a compatible quasi-proximity or *LE*-proximity then we have

 $(A, B) \in \delta$ iff $(\mathscr{Q}\text{-cl}A, \mathscr{P}\text{-cl}B) \in \delta$.

But this is not the case if δ is a *PR*-proximity.

Let X be an infnite set and p be a fixed point of X. let $\mathscr{P} = \{U : X - U \text{ is} finite or <math>p \notin U\}$. Then \mathscr{P} is a regular topology on X. Consider the pairwise regular space $(X, \mathscr{P}, \mathscr{P})$. Let A and B infinite sets such that X - A and X - B are not finite, $A \cap B = \phi$ and $p \notin A, p \notin B$. Then A and B are open and so $(A, B) \notin \delta_2$ the PR-proximity of Theorem 2.4. Also $\mathscr{P} - clA = A \cup \{p\}$, $\mathscr{P} - clB = B \cup \{p\}$ and so $(\mathscr{P} - cl A, \mathscr{P} - cl B) \in \delta_2$. Here δ_2 is not an LE-proximity. For if it were, the compatibility condition would imply $(A, B) \in \delta_2 \iff (\mathscr{P} - clA, \mathscr{P} - clB) \in \delta_2$. In following theorems we discuss the relations between δ_1 and δ_2 .

A Note on Proximities and Pairwise Regular Spaces

29

DEFINITION. A bitopological space $(X, \mathscr{P}, \mathscr{Q})$ is said to be *pairwise extremally* disconnected if \mathscr{Q} -closure of each \mathscr{P} -open set is \mathscr{P} -open and \mathscr{P} -closure of each \mathscr{Q} -open set is \mathscr{Q} -open.

The following Theorem can be proved easily.

THEOREM 2.5. A space $(X, \mathcal{P}, \mathcal{Q})$ is pairwise extremally disconnected iff $A \cap B = \phi$, where A is \mathcal{P} -open, B is \mathcal{Q} -open implies \mathcal{Q} -cl $A \cap \mathcal{P}$ -cl $B = \phi$.

THEOREM 2.6. Let $(X, \mathscr{P}, \mathscr{Q})$ be a pairwise regular space and let δ_1 and δ_2

be defined as in Theorems 2.4 and 2.5 respectively. Then

- 1. $\delta_1 \geq \delta_2$ iff $(X, \mathscr{P}, \mathscr{Q})$ is pairewise extremally disconnected,
- 2. $\delta_2 \geq \delta_1$ iff $(X, \mathcal{P}, \mathcal{Q})$ is pairwise normal.

PROOF.1. Let X be pairwise extremally disconnected and that $(A, B) \notin \delta_2$. By the definition of δ_2 there exists $U \in \mathscr{P}$, $V \in \mathscr{Q}$ such that $A \subset U \subset X - V$ $\subset X - B$ which implies \mathscr{Q} -cl $A \subset \mathscr{Q}$ -cl U, \mathscr{P} -cl $B \subset \mathscr{P}$ -cl V and \mathscr{Q} -cl $U \cap \mathscr{P}$ -cl V $= \phi$, since $U \cap V = \phi$ and X is pairwise extremally disconnected. Clearly (A, B) $\notin \delta_1$. Conversely let $\delta_1 \geq \delta_2$ and let A and B be sets such that $A \in \mathscr{Q}, B \in \mathscr{P}$ and $A \cap B = \phi$. By the definition of δ_2 , $(B, A) \notin \delta_2$ and therefore by the hypothesis $(B, A) \notin \delta_1$ i.e., \mathscr{Q} -cl $B \cap \mathscr{P}$ -cl $A = \phi$ and so X is pairwise extremally disconnected.

2. Let X be pairwise normal and that $(A, B) \notin \delta_1$. By the definition of δ_1 , \mathcal{Q} -cl $A \cap \mathscr{P}$ -cl $B = \phi$ and by the hypothesis there are sets $U \in \mathscr{P}, V \in \mathcal{Q}$ such that \mathcal{Q} -cl $A \subset U$, \mathscr{P} -cl $B \subset V$ and $U \cap V = \phi$. Therefore $(A, B) \notin \delta_2$, i.e., $\delta_2 \geq \delta_1$. Conversely suppose $\delta_2 \geq \delta_1$ and that $A = \mathcal{Q}$ -cl A, $B = \mathscr{P}$ -cl B, $A \cap B = \phi$. Clearly $(A, B) \notin \delta_1$ and by the hypothesis $(A, B) \notin \delta_2$, i.e., there exist sets U and V such that $A \subset U \in \mathscr{P}$, $B \subset V \in \mathcal{Q}$, $U \cap V = \phi$.

COROLLARY 2.1. A pairwise regular space is pairwise extremally disconnected, pairwise normal iff $\delta_1 = \delta_2$.

COROLLARY 2.2. A pairwise regular pairwise connected space admits of at least two distinct compatible PR-proximities which are comparable iff the space is pairwise normal.

COROLLARY 2.3. A pairwise regular space which is not pairwise normal admits of at least two distinct compatible PR-proximities which are comparable iff the space is pairwise extremally disconnected.

On a pairwise completely regular space we have a PR-proximity which is not

M.K. Singal and Sunder Lal 30

a quasi-proximity.

THEOREM 2.7. Let $(X, \mathcal{P}, \mathcal{Q})$ be a pairwise completely regular space. Define $(A, B) \notin \delta_3$ iff there is a \mathscr{P} -cozero set U and a \mathscr{Q} -cozero set V such that $A \subset U$, $B \subset V$, $U \cap V = \phi$, then δ_3 is a compatible PR-proximity on X.

.

PROOF. We need to verify the axiom 5' only. Let $(x, A) \notin \delta_3$ and let U, V be disjoint cozero sets containing x and A respectively. Since \mathscr{P} -cozero sets form a

base for \mathscr{P} -open sets, $x \notin X - U \Longrightarrow$ there exist a \mathscr{P} -cozero set R and a \mathscr{Q} -cozero set S such that $x \in R$, $X - U \subset S$ and $R \cap S = \phi$. Clearly $(x, X - U) \notin \delta_3$ and (U, A) $\notin \delta_3$.

To see that $\mathcal{T}(\delta_3) = \mathcal{T}(\delta_3)$, let $A \in \mathcal{T}(\delta_3)$ and $x \in A$, then $(x, X - A) \notin \delta_3$ and so there exist a \mathscr{P} -cozero set U and a \mathscr{Q} -cozero set V such that $x \in U \subset X - V \subset A$, i.e., $A \in \mathscr{P}$. Conversely if $A \in \mathscr{P}$ and $x \in A$ then there exists a \mathscr{P} -usc, \mathscr{Q} -lsc function $f: X \longrightarrow [0,1]$ such that f(x)=0, f(X-A)=1, i.e., $x \in \{x \in X : f(x)\}$ $\left\{ -\frac{1}{2} \right\}$ and $X - A \subset \left\{ x \in X : -\frac{1}{2} < f(x) \right\}$. But $\left\{ x \in X : f(x) < -\frac{1}{2} \right\}$ is \mathscr{P} -cozero set which is disjoint from $\left\{x \in X : f(x) > \frac{1}{2}\right\}$ a \mathcal{O} -cozero set. Therefore $(x, X - A) \notin \mathbb{C}$ δ_3 i.e., $A \in \mathscr{T}(\delta_3)$. Thus $\mathscr{T}(\delta_3) = \mathscr{P}$. Similarly $\mathscr{T}(\delta_3') = \mathscr{Q}$.

DEFINITION. A bitopological space $(X, \mathcal{P}, \mathcal{Q})$, is said to be pariwise basically disconnected if \mathcal{Q} -closure of each \mathcal{P} -cozero set is \mathcal{P} -open and \mathcal{P} -closure of each \mathcal{Q} -cozero set is \mathcal{Q} -open.

Following theorem can be proved in a similar manner as Theorem 2.5.

THEOREM 2.8. A space $(X, \mathcal{F}, \mathcal{Q})$ is pairwise basically disconnected iff $A \cap B =$ ϕ , where A is \mathscr{P} -cozero set, B is \mathscr{Q} -cozero set, implies \mathscr{Q} -cl $A \cap \mathscr{P}$ -cl $B = \phi$.

Thus a pairwise completely regular space admits of at least three compatible *PR*-proximities δ_1, δ_2 and δ_3 .

The proof of the following is similar to the proof of Theorem 2.6.

THEOREM 2.9. Let(X, \mathcal{F}, \mathcal{Q}) be a pairwise completely regular space and let δ_1 and δ_2 be defined as in Theorems 2.4 and 2.8. Then 1. $\delta_1 \geq \delta_3$ iff X is pairwise basically disconnected,

?. $\delta_3 \geq \delta_1$ iff X is pairwise normal.

COROLLARY 2.4. For a pairwise completely regular space X, the following are equivalent.

A Note on Proximities and Pairwise Regular Spaces

(i) X is pairwise normal, (ii) $\delta_3 \ge \delta_1$, (iii) $\delta_2 \ge \delta_1$.

REMARK 2.4. On a pairwise completely regular space $(X, \mathcal{P}, \mathcal{Q})$, let δ_4 denote the *PR*-(in fact quasi-) proximity defined by $(A, B) \notin \delta_4$ iff there exists a map fwhich is \mathcal{P} -usc, \mathcal{Q} -lsc such that f is zero on A and 1 on B. Thus on a pairwise com-

pletely regular space we have four compatible *PR*-proximities. In general $\delta_2 \ge \delta_3 \ge \delta_4$. If the space is pairwise normal, then $\delta_2 \ge \delta_4 \ge \delta_1$ and $\delta_3 \ge \delta_1$. If it is pairwise extremally disconnected, then $\delta_1 \ge \delta_2$ and on a pairwise basically disconnected space $\delta_1 \ge \delta_3$. On a pairwise normal bi T_1 -space $\delta_1 = \delta_4$ and $\delta_2 \ge \delta_1$. Therefore on an pairwise extremally disconnected pairwise normal bi T_1 -space $\delta_1 = \delta_2 = \delta_3 = \delta_4$.

Institute of Advanced Studies, Meerut University, Meerut 250001 India

31

 J.C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (1963) 71-89.
M.K. Singal and Sunder Lal, Biquasi-proximity spaces and compactification of a pairwise proximity space, Kyungpook Math. J.13 (1973), 41-49.
E.P. Lane, Bitopological spaces and quasi-uniform spaces, Proc. London Math. Soc.

17 (1967), 241-256.

[4] _____, Bitopological spaces and quasi-proximity spaces, Portugal. Math. 28 (1969), 151-159.

- [5] M.G. Murdeshwar and S.A. Naimpally, Quasi-uniform topological spaces Monograph, P.Noordhoff 1966.
- [6] S. A. Naimpally and B. D. Warrack, Proximity spaces. Cambridge Tract No. 59 1970.