SOME PROPERTIES OF $K\{M_s\}$ AND $Z\{M_s\}$ SPACES

By SUNG KI KIM

1. Introduction.

In this note, we obtain that translate is an isomorphism on the $K\{M_p\}$ and $Z\{M_p\}$ spaces under some conditions on $\{M_p\}$. A part of the results on $K\{M_p\}$ spaces is the same one of [4] without some conditions. We also deal some properties of the generalized W-spaces [3] and the relations with the usual W-spaces [1].

Throughout this note we use the terminology and notation in [1, 2, 3].

2. Translate on $K\{M_p\}$ and $Z\{M_p\}$ spaces.

If φ is in $K\{M_p\}$ or $Z\{M_p\}$ spaces and $h \subseteq R^n$, the translate of φ by h is denoted by $\tau_h \varphi$.

We will only consider $K\{M_p\}$ and $Z\{M_p\}$ spaces that satisfy the following condition F.

F: For each p, there is a p'>p and $C_{p'}$, $_h>0$ such that $\tau_h M_p \ge C_{p'}$, $_h M_{p'}$ for all $h \in \mathbb{R}^n$.

The examples of the spaces satisfying the condition F are the space of of rapidly decreasing functions, $W_{M,a}$, $W^{o,b}$ and $W^{o,b}_{M,a}$ [1].

Also the spaces $W_{\rho,a}$, $W^{\rho*,b}$ and $W^{\rho0*,b}_{\rho,a}$ introduced in [3], satisfy the condition F.

We know that $\tau_h: \mathcal{Q} \rightarrow \mathcal{Q}$ is an isomorphism [2].

Furthermore we have the following

THEOREM 1. Let $\{M_p\}$ satisfy the condition F. Then the map $\tau_h: K\{M_p\} \to K\{M_p\}$ (or $Z\{M_p\} \to Z(M_p\}$) is an isomorphism, for each $h \in \mathbb{R}^n$.

Proof. Let us show that τ_h is continuous on $K\{M_p\}$. For $\varphi \in K\{M_p\}$, $\sup_{|\alpha| \le p} \sup_{x} M_p(x) |D^{\alpha}\tau_h \varphi(x)| = \sup_{|\alpha| \le p} \sup_{x} M_p(x-h) |D^{\alpha}\varphi(x)| \le C_{p'}, \lim_{|\alpha| \le p'} \sup_{x} M_{p'}(x) |D^{\alpha}\varphi(x)|.$

Hence $\|\tau_h \varphi\|_p \le C_{p',h} \|\varphi\|_{p'}$, from which we conclude that τ_h is continuous.

Since $\tau_h^{-1} = \tau_{-h}$, τ_h^{-1} is continuous. The bijectivity of τ_h is clear. This completes the proof for $K\{M_p\}$.

For the space $Z\{M_p\}$, we can show that τ_k is an isomorphism by using the same method of the above argument.

COROLLARY 2. Let $\{M_p\}$ satisfy the condition F and B be a bounded subset of $K\{Mp\}$ (or $Z\{M_p\}$). Then for any $\varepsilon > 0$, the set $\{|\tau_h \varphi| | |h| \le \varepsilon, \varphi \in B\}$ is also bounded in $K\{M_p\}$ (or $Z\{M_p\}$).

From the above result, it follows that translate is an isomorphism on $W_{\rho,a}$, $W^{\rho*,b}$ and $W^{\rho0,b,b}_{\rho,a}$.

3. Some properties on the generalized W-spaces and the relations with the usual W-spaces.

DEFINITION. $\{M_p\}$ and $\{M_p'\}$ are equivalent iff there exist C_p and C'_p such that $0 < C_p \le M_p/M_p' \le C'_p < \infty$.

If $\{M_p\}$ and $\{M'_p\}$ are equivalent, then $K\{M_p\}$ and $K\{M'_p\}$ $(Z\{M_p\})$ and $Z\{M'_p\}$ are the same linear topological spaces. If there is some x^1 such that $M_p = C_p M'_p$ for $|x| \ge |x^1|$ (or $|z| \ge |x^1|$), then $\{M_p\}$ and $\{M'_p\}$ are equivalent.

THEOREM 3. If there is some x^1 such that $\rho(x)-\rho^1(x)$ is a constant for $|x| \ge |x^1|$, then $W_{\rho_1,a}$ and $W_{\rho_1,a}$ ($W^{\rho_1,b}$ and $W^{\rho_1,b}$) are the identical spaces. Furthermore if there is some x^0 such that $\rho^0(x)-\rho^2(x)$ is a constant for $|x| \ge |x^0|$, then $W^{\rho_0,b}_{\rho_0,a}$ and $W^{\rho_0,b}_{\rho_0,a}$ are the identical spaces.

Proof. Taking $\eta_i = \rho_i'(x_i) = \rho_i'(x_i)$, we have

$$\rho_i(x_i) + \rho_i^*(\eta_i) = \eta_i x_i = \rho_i^1(x_i) + \rho_i^{1*}(\eta_i)$$

Hence the proof is straightforward.

REMARK. If $\rho(x)$ is symmetric and $\rho(0)=0$, then $W_{\rho l}$, a and $W^{\rho l*,b}$ are same of our usual W-spaces. In particular, if $\rho^0(x)$ is symmetric and $\rho^0(0)=0$, then $W_{\rho l,a}^{\rho 2*,b}$ are same of our usual W-spaces.

 W_{ρ} , $W^{\rho*}$ and $W^{\infty*}$ are evidently also the countable union space. Note that we have not defined a topology on the countable union space. But we can define the concepts of continuity and isomorphism on the countable union space [1].

THEOREM 4. If there is some x^1 such that $\rho(rx) \leq \rho^1(r'x)$ for $|x| \geq |x^1|$, then the topology of $W_{\rho 1}$ $(W^{\rho 1*})$ is stronger than the topology of W_{ρ} $(W^{\rho *})$ in the sence for countable union space [1].

Proof. By using [3, Th. 2], the proof is immediate.

DEFINITION. ρ and ρ^1 are *equivalent* iff there is some x^1 such that $\rho(rx) \leq \rho^1(r'x) \leq \rho(r''x)$ for $|x| \geq |x^1|$.

COROLLARY 5. If ρ and ρ^1 are equivalent, then W_{ρ^1} and W_{ρ} ($W^{\rho 1*}$ and $W^{\rho *}$) are identical space.

REMARK. In particular, if $\rho(x)$ is symmetric and $\rho(0) = 0$, then $W_{\rho 1}$ and $W^{\rho 1*}$ are the same of our usual W-spaces [1].

In [3], our results are not true in general except that $\mathcal{F}[W^{\rho*}, b] = W_{\rho, 1/b}$ and $\mathcal{F}[W^{\rho*}] = W_{\rho}$. Other Fourier images of the generalized W-spaces are included in the range spaces. But if there is some x^1 such that ρ and ρ^0 are symmetric for $|x| \ge |x^1|$, then our results are true.

References

- [1] Friedmann A., Generalized functions and partial differential equations. Prentice-Hall. 1963.
- [2] Horváth J., Topological Vector spaces and Distributions, Vol. 1, Addison-Wesley, 1966.
- [3] Sung Ki Kim, On the W-spaces, Bulletin of the Korean Mathematical Society. Vol. 11, April 1974.
- [4] Swartz C., Convolution in $K\{M_p\}$ spaces, Rockey mountain Journal of Mathematics, Vol. 2, Spring 1972.

Seoul National University