# HYPERSURFACES IN MANIFOLDS WITH SASAKIAN 3-STRUCTURE

BY YEONG-WU CHOE

### § 0. Introduction

Yano and Okumura [6] have defined the concept of an  $(f, g, u, v, \lambda)$ -structure in an even dimensional Riemannian manifold. Hypersurfaces with this structure in a Sasakian manifolds have been studied by Yano and Okumura [6], Yamaguchi [4] and Watanabe [3] and many authors. In particular, they proved that, if the  $(f, g, u, v, \lambda)$ -structure induced on a hypersurface of a Sasakian manifold is normal, the hypersurface is totally umbilical.

In this paper we define what we call a 3-structure in a hypersurface of a Sasakian 3-structure manifold and study the normalities of this 3-structure.

## § 1. Sasakian 3-structure manifold

Let  $\widetilde{M}$  be an *n*-dimensional differentiable manifold covered by a system of coordinate neighborhood  $\{U; y^{\epsilon}\}$ , where here and in the sequel, the indices  $\kappa$ ,  $\lambda, \mu, \nu, \cdots$  run over the range  $\{1, 2, \cdots, n\}$ . In this differentiable manifold  $\widetilde{M}$ , a set  $(\phi, \xi, \rho)$  of three tensor fields  $\phi, \xi$  and  $\rho$  of type (1, 1), (1, 0) and (0, 1) respectively is called an *almost contact structure*, if it satisfies the following conditions:

$$(1.1) \phi_{\lambda}^{\kappa} \xi^{\lambda} = 0, \phi_{\lambda}^{\kappa} \rho_{\kappa} = 0, \xi^{\lambda} \rho_{\lambda} = 1,$$

$$\phi_{\lambda}^{\kappa}\phi_{\nu}^{\lambda} = -\delta_{\nu}^{\kappa} + \rho_{\nu}\xi^{\kappa},$$

where  $\phi_{i}^{*}$  is necessarily of rank n-1.

When a manifold admits an almost contact structure, it is called an *almost* contact manifold and is necessarily of odd-dimensional. There exists in any almost contact manifold a Riemannian metric  $\tilde{g}_{\lambda x}$  such that

(1.3) 
$$\tilde{g}_{\lambda x} \xi^{\lambda} = \rho_{x}, \qquad \tilde{g}_{\lambda x} \phi_{\mu}^{\lambda} \phi_{\nu}^{x} = \tilde{g}_{\mu \nu} - \xi_{\mu} \xi_{\nu},$$

and such a Riemannian metric  $\tilde{g}_{\lambda x}$  is called a *Riemannian metric associated* with the given almost contact structure  $(\phi, \xi, \rho)$ . An almost contact manifold is called

an almost contact Riemannian manifold, when it is endowed with an associated Riemannian metric  $\tilde{g}_{\lambda \epsilon}$ .

An almost contact Riemannian manifold is called a Sasakian manifold (or a normal contact Riemannian manifold) if a certain tensor field constructed from the structure  $(\phi, \xi, \rho, \tilde{g})$  vanishes. However, an almost contact Riemannian manifold is normal if and only if the conditions

are satisfied, where in the following we use a notation  $\xi_{\lambda}$  in stead of  $\rho_{\lambda}$ . In a Riemannian manifold  $(\tilde{M}, \tilde{g})$ , a Sasakian structure  $(\phi, \hat{\xi}, \rho, \tilde{g})$  is sometimes denoted simply by  $\xi$ .

We now assume that there are three Sasakian structures  $(\phi, \xi, \tilde{g})$ ,  $(\psi, \eta, \tilde{g})$ and  $(\theta, \zeta, \tilde{g})$  in  $\tilde{M}$ . Then, such a set  $\{\xi, \eta, \zeta\}$  of three Sasakian structures  $\xi, \eta$ and  $\zeta$  is called a Sasakian 3-structure (or normal contact metric 3-structure) if it satisfies the following conditions:

(1. 6) 
$$\psi_{\lambda}{}^{\epsilon}\zeta^{\lambda} = -\theta_{\lambda}{}^{\epsilon}\eta^{\lambda} = \xi^{\epsilon}, \quad \theta_{\lambda}{}^{\kappa}\xi^{\lambda} = -\phi_{\lambda}{}^{\kappa}\zeta^{\lambda} = \eta^{\kappa}, \quad \phi_{\lambda}{}^{\kappa}\eta^{\lambda} = -\phi_{\lambda}{}^{\kappa}\xi^{\lambda} = \zeta^{\epsilon},$$
  
(1. 7)  $\psi_{\lambda}{}^{\mu}\theta_{\mu}{}^{\kappa} = \phi_{\lambda}{}^{\kappa} + \eta_{\lambda}\xi^{\kappa}, \quad \theta_{\lambda}{}^{\mu}\phi_{\mu}{}^{\kappa} = \psi_{\lambda}{}^{\kappa} + \zeta_{\lambda}\xi^{\kappa}, \quad \phi_{\lambda}{}^{\mu}\psi_{\mu}{}^{\kappa} = \theta_{\lambda}{}^{\kappa} + \xi_{\lambda}\eta^{\kappa}.$ 

$$(1.7) \qquad \phi_{\lambda}{}^{\mu}\theta_{\mu}{}^{\kappa} = \phi_{\lambda}{}^{\kappa} + \eta_{\lambda}\zeta^{\kappa}, \qquad \theta_{\lambda}{}^{\mu}\phi_{\mu}{}^{\kappa} = \phi_{\lambda}{}^{\kappa} + \zeta_{\lambda}\xi^{\kappa}, \qquad \phi_{\lambda}{}^{\mu}\phi_{\mu}{}^{\kappa} = \theta_{\lambda}{}^{\kappa} + \xi_{\lambda}\eta^{\kappa}$$

In such a case, the manifold  $\tilde{M}$  is necessarily of dimension n=4m+3  $(m\geq 0)$ (cf. [2]) and is called a Sasakian 3-structure manifold.

#### § 2. Surfaces in Sasakian 3-structure manifolds

In this section, we consider hypersurfaces in a Sasakian 3-structure manifold  $\widetilde{M}$ . Let M be a (4m+2)-dimensional differentiable manifold covered by a system of coordinate neighborhood  $\{U; x^h\}$ , where here and in the sequel, the indices  $h, i, j, k, \dots$  run over the range  $\{1, 2, \dots, 4m+2\}$ , and assume that M is differentiably immersed in M as a hypersurface by immersion  $i: M \longrightarrow \widetilde{M}$ , which is represented by the equations

$$y^{\kappa} = y^{\kappa}(x^i)$$

in each coordinated neighborhood  $\tilde{U}$  of  $\tilde{M}$ . If we put

$$B_i^{\kappa} = \partial_i y^{\kappa} \qquad (\partial_i = \partial/\partial x^i),$$

then  $B_i^*$  define a local vector field in  $\tilde{U}$  for each fixed index i and 4m+2 vec tor fields  $B_i^s$  span the tangent plane to M at each point of  $\tilde{U}$ . On putting

$$g_{ji}=g_{\lambda\kappa}B_j{}^{\lambda}B_i{}^{\kappa},$$

we see that  $g_{ji}$  define in M a Riemannian metric which is called the induced metric.

As is well known [1], a contact manifold is always orientable. We assume that the hypersurface M is also orientable and 4m+2 tangent vectors  $B_i^k$  are chosen in such a way that  $B_1^{\lambda}, \dots, B_{4m+2}^{\lambda}$  form a frame of positive orientation in M. Then we can choose a globally defined field of unit normal vectors  $C^{\lambda}$  in such a way that 4m+3 vectors  $C^{\lambda}$ ,  $B_1^{\lambda}$ , ...,  $B_{4m+2}^{\lambda}$  form a frame of positive orientation in  $\tilde{M}$ . Then, we get

$$\tilde{g}_{\lambda\kappa}B_i^{\lambda}C^{\kappa}=0,$$
  $C^{\lambda}C_{\lambda}=1,$   $B^i{}_{\lambda}B_j^{\lambda}=\delta_j{}^i,$   $B^i{}_{\lambda}B_i^{\kappa}=\delta_{\lambda}{}^{\kappa}-C_{\lambda}C^{\kappa},$ 

where we have put

$$B^{j}_{\lambda} = \tilde{g}_{\lambda k} B_{i}^{\kappa} g^{ji}, \qquad C_{\lambda} = \tilde{g}_{\lambda k} C^{\kappa}.$$

The transforms  $\phi_{\lambda}{}^{\kappa}B_{i}{}^{\lambda}$ ,  $\psi_{\lambda}{}^{\kappa}B_{i}{}^{\lambda}$  and  $\theta_{\lambda}{}^{\kappa}B_{i}{}^{\lambda}$  of  $B_{i}{}^{\lambda}$  can be expressed respectively as

(2. 2) 
$$\phi_{\lambda}{}^{\kappa}B_{i}{}^{\lambda} = \Phi_{i}{}^{h}B_{h}{}^{\kappa} + u_{i}C^{\kappa},$$
$$\psi_{\lambda}{}^{\kappa}B_{i}{}^{\lambda} = \Psi_{i}{}^{h}B_{h}{}^{\kappa} + v_{i}C^{\kappa},$$
$$\theta_{i}{}^{\kappa}B_{i}{}^{\lambda} = \Theta_{i}{}^{h}B_{i}{}^{\kappa} + w_{i}C^{\kappa},$$

where  $\Phi_i{}^h$ ,  $\mathcal{U}_i{}^h$  and  $\Theta_i{}^h$  are tensor fields of type (1,1), and  $u_i, v_i$  and  $w_i$  1-form of M.

The transforms of  $C^{\lambda}$  by  $\phi_{\lambda}^{\kappa}$ ,  $\phi_{\lambda}^{\kappa}$  and  $\theta_{\lambda}^{\kappa}$  can be put respectively

(2.3) 
$$\phi_1 {}^{\kappa}C^{\lambda} = -u^i B_i {}^{\kappa}, \quad \phi_1 {}^{\kappa}C^{\lambda} = -v^i B_i {}^{\kappa}, \quad \theta_1 {}^{\kappa}C^{\lambda} = -w^i B_i {}^{\kappa},$$

where  $u^i = g^{ji}u_i$ ,  $v^i = g^{ji}v_i$  and  $w^i = g^{ji}w_i$ .

Taking account of (2.2) and (2.3), we have

(2.4) 
$$\Phi_{j}^{i} = B^{i}_{\lambda} \phi_{\mu}{}^{\lambda} B_{j}{}^{\mu}, \quad \Psi_{j}^{i} = B^{i}_{\lambda} \phi_{\mu}{}^{\lambda} B_{j}{}^{\mu}, \quad \Theta_{j}^{i} = B^{i}_{\lambda} \theta_{\mu}{}^{\lambda} B_{j}{}^{\mu}.$$

$$(2.5) u_j = B_j \lambda \phi_{\lambda}^{\mu} C_{\mu}, v_j = B_j \lambda \phi_{\lambda}^{\mu} C_{\mu}, w_j = B_j \lambda \theta_{\lambda}^{\mu} C_{\mu}.$$

If we put

(2.6) 
$$\xi^{\kappa} = B_i^{\kappa} \xi^i + \alpha C^{\kappa}$$
,  $\eta^{\kappa} = B_i^{\kappa} \eta^i + \beta C^{\kappa}$ ,  $\zeta^{\kappa} = B_i^{\kappa} \zeta^i + \gamma C^{\kappa}$ , then by virtue of (1.1), (1.2), (2.4), (2.5) and (2.6) we easily find the

following equations (2.7)-(2.10):

(2.8) 
$$\Phi_i^h \Phi_h^i = -\delta_i^i + u_i u^i + \xi_i \xi^i,$$

(2.9) 
$$\xi_i \Phi_j^i = -\alpha u_j, \quad u_i \Phi_j^i = \alpha \xi_j,$$

(2.10) 
$$u^{i}u_{i} = \xi^{i}\xi_{i} = 1 - \alpha^{2}, \quad u^{i}\xi_{i} = 0,$$

and for another two Sasakian structures the similar relations are obtained.

The equations (2.8)-(2.10) show that  $(\Phi, g, u, \xi, \alpha)$  is a so called  $(f, g, u, v, \lambda)$ -structure in M (See [6]). Thus we have now three  $(f, g, u, v, \lambda)$ -structures  $(\Phi, g, u, \xi, \alpha)$ ,  $(\Psi, g, v, \eta, \beta)$  and  $(\Theta, g, w, \zeta, \eta)$  in M.

Applying again  $\Phi$ ,  $\Psi$  and  $\Theta$  to (2.2) and taking account of (1.7), (2.3) and (2.6), we get

Applying again  $\phi$ ,  $\phi$  and  $\theta$  to (2.3) and taking account of (1.7), (2.2), (2.3) and (2.6), we find

(2.13) 
$$u^{i}v_{i}=-\alpha\beta, \quad v^{i}w_{i}=-\beta\gamma, \quad w^{i}u_{i}=-\gamma\alpha.$$

Applying  $\phi$ ,  $\psi$  and  $\theta$  to (2.6) and using (1.6), (2.2), (2.3) and (2.6), we obtain

(2. 14) 
$$\eta_{i}\Theta_{j}^{i} = \xi_{j} - \beta w_{j}, \qquad \zeta_{i}\Psi_{j}^{i} = -\xi_{j} - \gamma v_{j}, \\
\zeta_{i}\Phi_{j}^{i} = \eta_{j} - \gamma u_{j}, \qquad \xi_{i}\Theta_{j}^{i} = -\eta_{j} - \alpha w_{j}, \\
\xi_{i}\Psi_{j}^{i} = \zeta_{j} - \alpha v_{j}, \qquad \eta_{i}\Phi_{j}^{i} = -\zeta_{j} - \beta u_{j}, \\
v^{i}\zeta_{i} = -w^{i}\eta_{i} = \alpha, \qquad w^{i}\xi_{i} = -u^{i}\zeta_{i} = \beta, \qquad u^{i}\eta_{i} = -v^{i}\xi_{i} = \gamma.$$

The triple  $\{(\emptyset, g, u, \xi, \alpha), (\emptyset, g, v, \eta, \beta), (\Theta, g, w, \zeta, \gamma)\}$  of  $(f, g, u, v, \lambda)$ -structures satisfying (2.11)-(2.15) is called a 3-structure. We denote by  $\{\mu^{\lambda}_{\nu}\}$  the Christoffel symbols constructed from the given Riemannian metric  $\tilde{g}_{\lambda k}$  in  $\tilde{M}$  and by  $\{f^{k}_{i}\}$  those constructed from the metric  $g_{ji}$  induced in the hypersurface M. We denote by  $h_{ji}$  the second fundamental tensor of the hypersurface M and

put  $h^{i}_{j} = g^{ik}h_{kj}$ . Then, the equations of Gauss and Weingarten are given respectively by

$$(2.16) \nabla_i B_i^{\lambda} = \partial_i B_i^{\lambda} + \{ \{ \{ \} \} \} B_i^{\nu} B_i^{\mu} - \{ \{ \} \} B_h^{\lambda} = h_{ii} C^{\lambda},$$

(2. 17) 
$$\nabla_j C^{\lambda} = \partial_j C^{\lambda} + \{\mu^{\lambda}_{\nu}\} B_j^{\nu} C^{\mu} = -h_j^{i} B_i^{\lambda}.$$

Differentiating (2.4), (2.5) and (2.6) covariantly along M and taking account of (2.16) and (2.17), we have

$$(2.18) \nabla_{i} \Phi_{i}^{h} = -h_{ii} u^{h} + h_{i}^{h} u_{i} - g_{ii} \xi^{h} + \delta_{i}^{h} \xi_{i},$$

$$(2.19) \nabla_i u_i = -h_{ii} \Phi_i^{\ t} - \alpha g_{ii},$$

$$(2.20) \nabla_{i} \xi_{i} = \Phi_{ii} + \alpha h_{ii},$$

and for another two Sasakian structures the similar relations are obtained.

## § 3. Hypersurfaces with 3-structure

As preliminalies, we recall the definitions of quasinormal and normal of an  $(f, g, u, v, \lambda)$ -structure.

We now put

$$S[\boldsymbol{\Phi}, \boldsymbol{\Phi}]_{ji}{}^{h} = [\boldsymbol{\Phi}, \boldsymbol{\Phi}]_{ji}{}^{h} + (\boldsymbol{\nabla}_{j}\boldsymbol{u}_{i} - \boldsymbol{\nabla}_{i}\boldsymbol{u}_{j})\boldsymbol{u}^{h} + (\boldsymbol{\nabla}_{j}\xi_{i} - \boldsymbol{\nabla}_{i}\xi_{j})\xi^{h},$$

$$(3. 1) \qquad S[\boldsymbol{\Psi}, \boldsymbol{\Theta}]_{ji}{}^{h} = [\boldsymbol{\Psi}, \boldsymbol{\Theta}]_{ji}{}^{h} + [\boldsymbol{\nabla}_{j}\boldsymbol{v}_{i} - \boldsymbol{\nabla}_{i}\boldsymbol{v}_{j})\boldsymbol{w}^{h} + (\boldsymbol{\nabla}_{i}\boldsymbol{w}_{j} - \boldsymbol{\nabla}_{i}\boldsymbol{w}_{j})\boldsymbol{v}^{h} + (\boldsymbol{\nabla}_{j}\eta_{i} - \boldsymbol{\nabla}_{i}\eta_{j})\zeta^{h} + (\boldsymbol{\nabla}_{j}\zeta_{i} - \boldsymbol{\nabla}_{i}\zeta_{j})\eta^{h},$$

where  $[\Phi, \Phi]$  is the Nijenhuis tensor formed with  $\Phi$  and  $[\Psi, \Phi]$  the Nijenhuis tensor formed with  $\Psi, \Theta$  respectively. Similarly, we define  $S[\Psi, \Psi]$ ,  $S[\Theta, \Phi]$ ,  $S[\Theta, \Phi]$  and  $S[\Phi, \Psi]$  for the other tensors.

An  $(f, g, u, v, \lambda)$ -structure  $(\Phi, g, u, \xi, \alpha)$  is said to be *quasi-normal* if the condition.

$$(3.2) S[\boldsymbol{\Phi}, \boldsymbol{\Phi}]_{iih} - (\boldsymbol{\Phi}_i^{t} \boldsymbol{\Phi}_{tih} - \boldsymbol{\Phi}_i^{t} \boldsymbol{\Phi}_{tih}) = 0$$

is satisfied, where

(3.3) 
$$\Phi_{jih} = \nabla_j \Phi_{ih} - \nabla_i \Phi_{hj} - \nabla_h \Phi_{ji}.$$

The structure  $(\Phi, g, u, \xi, \alpha)$  is said to be normal if this structure satisfies

$$(3.4) S \llbracket \boldsymbol{\Phi}, \; \boldsymbol{\Phi} \rrbracket = 0.$$

In the following we study some properties on a hypersurface with the induced 3-structure of a manifold with Sasakian 3-structure.

Substituting (2.18), (2.19) and (2.20) into (3.1), we get

(3.5) 
$$S[\Phi, \Phi]_{ji}^{h} = (\Phi_{j}^{t}h_{t}^{h} - h_{j}^{t}\Phi_{i}^{h})u_{i} - (\Phi_{i}^{t}h_{t}^{h} - h_{i}^{t}\Phi_{i}^{h})u_{j},$$

$$(3.6) S[\boldsymbol{\varPsi}, \boldsymbol{\Theta}]_{ji}^{h} = (\boldsymbol{\varPsi}_{j}^{t}h_{i}^{h} - h_{j}^{t}\boldsymbol{\varPsi}_{i}^{h})w_{i} - (\boldsymbol{\varPsi}_{i}^{t}h_{i}^{h} - h_{i}^{t}\boldsymbol{\varPsi}_{i}^{h})w_{j} + (\boldsymbol{\Theta}_{j}^{t}h_{i}^{h} - h_{j}^{t}\boldsymbol{\Theta}_{i}^{h})v_{i} - (\boldsymbol{\Theta}_{i}^{t}h_{i}^{h} - h_{i}^{t}\boldsymbol{\Theta}_{i}^{h})v_{j}.$$

By the first equation of (3.5), (3.4) is equivalent to the commutativity of  $\Phi$  and h on a hypersurface of a Sasakian manifold.

The following Lemma A is known ([6]).

LEMMA A. Let M(>2) be an orientable connected hypersurface of a Sasakian manifold  $\tilde{M}$ . If one of  $\Phi$ ,  $\Phi$  and  $\Theta$  commute h and  $\alpha^2 \neq 1$  (resp.  $\beta^2 \neq 1$  or  $\gamma^2 \neq 1$ ) almost everywhere, then the hypersurface M is totally umbilical.

Substituting (2.18) into (3.4), we find  $\Phi_{jih}=0$ . Thus the equation (3.3) shows that the structure  $(\Phi, g, u, \hat{\xi}, \alpha)$  is normal on the hypersurface M.

So we have the following from Lemma A and (3.5)

PROPOSITION 3. 1. Let M be a hypersurface with a 3-structure  $\{(\Phi, g, u, \xi, \alpha), (\Psi, g, v, \eta, \beta), (\Theta, g, w, \zeta, \gamma)\}$  of a Sasakian manifoled. If one of  $3(f, g, u, v, \lambda)$ -structures  $(\Phi, g, u, \xi, \alpha)$ ,  $(\Psi, g, v, \eta, \beta)$  and  $(\Theta, g, w, \zeta, \gamma)$  is a normal on M, then the others are so also.

PROPOSITION 3. 2. Under the same assumptions as those in Lemma A, all of  $S[\Phi, \Phi]$ ,  $S[\Psi, \Psi]$ ,  $S[\Phi, \Theta]$ ,  $S[\Psi, \Phi]$  and  $S[\Phi, \Psi]$  are vanished.

Now we prove

PROPOSITION 3.3. If the vectors  $u^h, v^h$  and  $w^h$  for the induced 3-structure on a hypersurface of a Sasakian 3-structure manifold are linearly independent alm ost everywhere, and if  $S[\Psi, \Theta] = 0$ , then  $\Psi$  and  $\Theta$  are normal.

*Proof.* From the second equation of (3.2), we have

$$(\mathcal{T}_{j}^{t}h_{i}^{h}-h_{j}^{t}\mathcal{T}_{t}^{h})w_{i}+(\Theta_{j}^{t}h_{i}^{h}-h_{j}^{t}\Theta_{t}^{h})v_{i}$$

$$=(\mathcal{T}_{i}^{t}h_{i}^{h}-h_{i}^{t}\mathcal{T}_{t}^{h})w_{j}+(\Theta_{i}^{t}h_{i}^{h}-h_{i}^{t}\Theta_{t}^{h})v_{j}.$$
(3.7)

Transvecting (3.7) with  $v^i$  and  $w^i$  respectively and using (2.10) and (2.13), we obtain

(3.8) 
$$(\Psi_{j}^{t}h_{th} - h_{j}^{t}\Psi_{th}) (-\beta\gamma) + (\Theta_{j}^{t}h_{th} - h_{j}^{t}\Theta_{th}) (1 - \beta^{2})$$

$$= \beta'v_{j}v_{k} + \gamma'w_{j}w_{h},$$
(3.9) 
$$(\Psi_{j}^{t}h_{th} - h_{j}^{t}\Psi_{th}) (1 - \gamma^{2}) + (\Theta_{j}^{t}h_{th} - h_{j}^{t}\Theta_{th}) (-\beta\gamma)$$

$$= \beta''v_{j}v_{k} + \gamma''w_{j}w_{h},$$

where  $\beta'$ ,  $\beta''$ ,  $\gamma'$  and  $\gamma''$  are defined respectively by

$$\begin{split} \beta'v_h &= v^i(\Theta_i{}^th_{th} - h_i{}^t\Theta_{th}), \quad \gamma'w_h = v^i(\varPsi_i{}^th_{th} - h_i{}^t\varPsi_{th}), \\ \beta''v_h &= w^i(\Theta_i{}^th_{th} - h_i{}^t\Theta_{th}), \quad \gamma''w_h = w^i(\varPsi_i{}^th_{th} - h_i{}^t\varPsi_{th}). \end{split}$$

Eliminating the terms of  $w_i w_h$  from (3.8) and (3.9), we get

$$\begin{split} \big[ (1-\gamma^2)\gamma' + \beta\gamma\gamma'' \big] ( \varPsi_j{}^t h_{th} + \varPsi_h{}^t h_{tj} ) - \big[ (1-\beta^2)\gamma'' + \beta\gamma\gamma' \big] \\ & \times (\Theta_j{}^t h_{th} + \Theta_h{}^t h_{tj}) = (\beta''\gamma' - \beta'\gamma'') v_i v_h. \end{split}$$

from which, by transvecting  $g^{jh}$ ,  $(\beta''\gamma' - \beta'\gamma'')(1-\beta^2) = 0$ .

Since  $v^h$  and  $w^h$  are linearly independent almost everywhere, i. e.,

$$\begin{vmatrix} 1-\beta^2 & -\beta\gamma \\ -\beta\gamma & 1-\gamma^2 \end{vmatrix} \neq 0$$
 almost everywhere.

This together with (3.8) and (3.9) show that  $\Psi$  and  $\Theta$  commute with h. Hence  $\Psi$  and  $\Theta$  are normal structure.

## Bibliography

- [1] Ishihara, S., On a tensor field  $\phi_i^h$  satisfying  $\phi = \pm 1$ . Tõhoku Math. J. 13 (19 61), 443-454.
- [2] Kuo, Y.Y., On almost contact 3-structure. Tõhoku Math. J. 22 (1970), 325-3 32.
- [3] Watanabe, Y., Totally umbilical surfaces in normal contact Riemannian manifolds. Kōdai Math. Sem. Rep. 19 (1967), 474-487.
- [4] Yamaguchi, S., On hypersurfaces in Sasakian manifolds. Kōdai Math. Sem. Rep. 21 (1969), 64-72.
- [5] Yano, K., and Ki, U-H., Manifolds with antinormal  $(f, g, u, v, \lambda)$ -structure. Kōdai Math. Sem. Rep. 25 (1973), 48-62.
- [6] Yano, K., and Okumura, M., On  $(f, g, u, v, \lambda)$ -structure. Ködai Math. Sem. Rep. 24 (1972), 106-120.

Taegu Teachers College