HYPERSURFACES IN MANIFOLDS WITH SASAKIAN 3-STRUCTURE

By Yeong-Wu Choe

§ 0. Introduction

Yano and Okumura [6] have defined the concept of an (f, g, u, v, λ)-structure in an even dimensional Riemannian manifold. Hypersurfaces with this structure in a Sasakian manifolds have been studied by Yano and Okumura [6], Yamaguchi [4] and Watanabe [3] and many authors. In particular, they proved that, if the (f, g, u, v, λ)-structure induced on a hypersurface of a Sasakian manifold is normal, the hypersurface is totally umbilical.

In this paper we define what we call a 3 -structure in a hypersurface of a Sasakian 3-structure manifold and study the normalities of this 3 -structure.

§1. Sasakian 3-structure manifold

Let \tilde{M} be an n-dimensional differentiable manifold covered by a system of coordinate neighborhood $\left\{U ; y^{*}\right\}$, where here and in the sequel, the indices κ, $\lambda, \mu, \nu, \cdots$ run over the range $\{1,2, \cdots, n\}$. In this differentiable manifold \tilde{M}, a set (ϕ, ξ, ρ) of three tensor fields ϕ, ξ and ρ of type (1,1), (1,0) and (0,1) respectively is called an almost contact structure, if it satisfies the following conditions:

$$
\begin{gather*}
\phi_{\lambda}{ }^{\kappa} \xi^{\lambda}=0, \quad \phi_{\lambda}{ }^{\kappa} \rho_{k}=0, \quad \xi^{\lambda} \rho_{\lambda}=1, \tag{1.1}\\
\phi_{\lambda}{ }^{\kappa} \phi_{\nu}^{\lambda}=-\delta_{\lambda}{ }^{\kappa}+\rho_{2} \xi^{\kappa},
\end{gather*}
$$

where $\phi_{\lambda}{ }^{*}$ is necessarily of rank $n-1$.
When a manifold admits an almost contact structure, it is called an almost contact manifold and is necessarily of odd-dimensional. There exists in any almost contact manifold a Riemannian metric $\tilde{g}_{\lambda x}$ such that

$$
\begin{equation*}
\tilde{g}_{\lambda_{k} \xi^{\alpha}}=\rho_{k}, \quad \tilde{g}_{\lambda \kappa} \phi_{\mu}{ }^{\lambda} \phi_{\nu}{ }^{\kappa}=\tilde{g}_{\mu \nu}-\xi_{\mu} \xi_{\nu}, \tag{1.3}
\end{equation*}
$$

and such a Riemannian metric $\tilde{g}_{\lambda \varepsilon}$ is called a Riemannian metric associated with the given almost contact structure (ϕ, ξ, ρ). An almost contact manifold is called
an almost contact Riemannian manifold, when it is endowed with an associated Riemannian metric $\tilde{g}_{k_{k}}$.
An almost contact Riemannian manifold is called a Sasakian manifold (or a normal contact Riemannian manifold) if a certain tensor field constructed from the structure ($\phi, \xi, \rho, \tilde{g}$) vanishes. However, an almost contact Riemannian manifold is normal if and only if the conditions
are satisfied, where in the following we use a notation ξ_{λ} in stead of ρ_{λ}. In a Riemannian manifold (\tilde{M}, \tilde{g}), a Sasakian structure $(\phi, \xi, \rho, \tilde{g})$ is sometimes denoted simply by ξ.
We now assume that there are three Sasakian structures $(\phi, \xi, \tilde{g}),(\phi, \eta, \tilde{g})$ and $(\theta, \zeta, \tilde{g})$ in \tilde{M}. Then, such a set $\{\xi, \eta, \zeta\}$ of three Sasakian structures $\bar{\xi}, \eta$ and ζ is called a Sasakian 3-structure (or normal contact metric 3 -structure) if it satisfies the following conditions:

$$
\begin{equation*}
\xi^{2} \eta_{\lambda}=\eta^{2} \zeta_{\lambda}=\zeta^{\eta} \xi_{\lambda}=0, \tag{1.5}
\end{equation*}
$$

(1.6) $\quad \phi_{\lambda}{ }^{\kappa} \zeta^{\lambda}=-\theta_{\lambda}{ }^{\kappa} \eta^{\lambda}=\xi^{\kappa}, \quad \theta_{\lambda}{ }^{\kappa} \xi^{\lambda}=-\phi_{\lambda}{ }^{\kappa} \zeta^{\lambda}=\eta^{\kappa}, \quad \phi_{\lambda}{ }^{\kappa} \eta^{\lambda}=-\phi_{\lambda}{ }^{\kappa} \xi^{\lambda}=\zeta^{\pi}$,
(1.7) $\quad \phi_{\lambda}{ }^{\mu} \theta_{\mu}{ }^{\kappa}=\phi_{\lambda}{ }^{\kappa}+\eta_{\lambda}{ }^{k}{ }^{\kappa}, \quad \theta_{\lambda}{ }^{\mu} \phi_{\mu_{\mu}}{ }^{\kappa}=\phi_{\lambda}{ }^{\kappa}+\zeta_{\lambda} \xi^{\kappa}, \quad \phi_{\lambda}{ }^{\mu} \psi_{\mu}{ }^{\kappa}=\theta_{\lambda}{ }^{\kappa}+\xi_{\lambda} \eta^{k}$.

In such a case, the manifold \tilde{M} is necessarily of dimension $n=4 m+3(m \geq 0)$. (cf. [2]) and is called a Sasakian 3-structure manifold.

§2. Surfaces in Sasakian 3-structure manifolds

In this section, we consider hypersurfaces in a Sasakian 3 -structure manifold \tilde{M}. Let M be a ($4 m+2$)-dimensional differentiable manifold covered by a system of coordinate neighborhood $\left\{U ; x^{k}\right\}$, where here and in the sequel, the indices h, i, j, k, \cdots run over the range $\{1,2, \cdots, 4 m+2\}$, and assume that M is differentiably immersed in M as a hypersurface by immersion $i: M \longrightarrow \tilde{M}$, which. is represented by the equations

$$
y^{r}=y^{r}\left(x^{i}\right)
$$

in each coordinated neighborhood \tilde{U} of \tilde{M}. If we put

$$
B_{i}{ }^{k}=\partial_{i} y^{k} \quad\left(\partial_{i}=\partial / \partial x^{i}\right),
$$

then $B_{i}{ }^{*}$ define a local vector field in \widetilde{U} for each fixed index i and $4 m+2$ vec tor fields $B_{i}{ }^{k}$ span the tangent plane to M at each point of \widetilde{U}. On putting

$$
g_{j i}=g_{\lambda s} B_{j}^{\lambda} B_{i}{ }^{\kappa}
$$

we see that $g_{j i}$ define in M a Riemannian metric which is called the induced metric.

As is well known [1], a contact manifold is always orientable. We assume that the hypersurface M is also orientable and $4 \mathrm{~m}+2$ tangent vectors $B_{i}{ }^{k}$ are chosen in such a way that $B_{1}{ }^{2}, \cdots, B_{4 m+2}{ }^{2}$ form a frame of positive orientation in M. Then we can choose a globally defined field of unit normal vectors C^{2} in such a way that $4 m+3$ vectors $C^{\lambda}, B_{1}^{\lambda}, \cdots, B_{4 m+2^{2}}$ form a frame of positive orien tation in \breve{M}. Then, we get

$$
\begin{aligned}
& \tilde{g}_{\lambda k} B_{i}{ }^{2} C^{\kappa}=0, \\
& B_{\lambda}^{i} B_{j}{ }^{\lambda}=C_{j}{ }_{j},
\end{aligned} \quad B^{i} C_{\lambda}{ }_{\lambda} B_{i}{ }^{\kappa}=\delta_{\lambda}=\delta^{\kappa}-C_{\lambda} C^{\kappa},
$$

where we have put

$$
B_{\lambda}^{j}=\tilde{g}_{\lambda_{k}} B_{i}{ }^{\kappa} g^{j i}, \quad C_{\lambda}=\tilde{g}_{\lambda k} C^{\kappa} .
$$

The transforms $\phi_{\lambda}{ }^{A} B_{i}{ }^{\lambda}, \psi_{\lambda}{ }^{\wedge} B_{i}{ }^{2}$ and $\theta_{\lambda}{ }^{\kappa} B_{i}{ }^{\lambda}$ of $B_{i}{ }^{\lambda}$ can be expressed respectively as

$$
\begin{align*}
& \phi_{\lambda}{ }^{\kappa} B_{i}{ }^{2}=\Phi_{i}{ }^{h} B_{h}{ }^{\kappa}+u_{i} C^{\kappa}, \tag{2.2}\\
& \psi_{\lambda}{ }^{\wedge} B_{i}{ }^{2}=\mathscr{Y}^{i}{ }^{k} B_{h}{ }^{*}+v_{i} C^{\kappa}, \\
& \theta_{\lambda}{ }^{*} B_{i}{ }^{2}=\theta_{i}{ }^{h} B_{h}{ }^{\kappa}+w_{i} C^{\kappa},
\end{align*}
$$

where $\Phi_{i}{ }^{h}, \mathbb{\Psi}_{i}{ }^{h}$ and $\Theta_{i}{ }^{h}$ are tensor fields of type (1,1), and u_{i}, v_{i} and $w_{i} 1-$ form of M.
The transforms of C^{λ} by $\phi_{\lambda}{ }^{k}, \phi_{\lambda}{ }^{k}$ and $\theta_{\lambda}{ }^{k}$ can be put respectively

$$
\begin{equation*}
\phi_{\lambda}{ }^{\kappa} C^{\lambda}=-u^{i} B_{i}{ }^{\kappa}, \quad \phi_{\lambda}{ }^{\kappa} C^{\lambda}=-v^{i} B_{i}{ }^{k}, \quad \theta_{\lambda}{ }^{\kappa} C^{\lambda}=-w^{i} B_{i}{ }^{\kappa}, \tag{2.3}
\end{equation*}
$$

where $u^{i}=g^{j i} u_{j}, v^{i}=g^{j i} v_{j}$ and $w^{i}=g^{j i} w_{j}$.
Taking account of (2.2) and (2.3), we have

$$
\begin{align*}
\Phi_{j}{ }^{i} & =B_{\lambda}^{i} \phi_{\mu}{ }^{2} B_{j}{ }^{\mu}, & \Psi{ }_{j}{ }^{i}=B^{i}{ }_{2} \phi_{\mu}{ }^{\lambda} B_{j}{ }^{\mu}, & \theta_{j}{ }^{i}=B^{i}{ }_{\lambda} \theta_{\mu}{ }^{2} B_{j}{ }^{\mu}, \tag{2.4}\\
u_{j} & =B_{j}{ }_{j} \phi_{\lambda}{ }^{\mu} C_{\mu}, & v_{j} & =B_{j}{ }_{j} \psi_{\lambda}{ }^{\mu} C_{\mu}, \tag{2.5}
\end{align*} w_{j}=B_{j}{ }^{2} \theta_{\lambda}{ }^{\mu} C_{\mu} .
$$

If we put
(2.6) $\quad \xi^{\kappa}=B_{i}{ }^{\kappa} \xi^{i}+\alpha C^{\kappa}, \quad \eta^{\kappa}=B_{i}{ }^{\kappa} \eta^{i}+\beta C^{\kappa}, \quad \zeta^{\kappa}=B_{i}{ }^{\kappa} \xi^{i}+\gamma C^{\kappa}$,
then by virtue of (1.1), (1.2), (2.4), (2.5) and (2.6) we easily find the
following equations (2 7)-(2 10):
(2.7)
(2.8)

$$
\begin{align*}
& \Phi_{j i}=\Phi_{j}{ }^{t} g_{t i}=-\Phi_{i j}, \\
& \Phi_{j}{ }^{j} \Phi_{h}=-\delta_{j}{ }^{i}+u_{j} u^{i}+\xi_{j} \xi^{i}, \\
& \xi_{i} \Phi_{j}=-\alpha u_{j}, \quad u_{i} \Phi_{j}=\alpha \xi_{j}, \tag{29}\\
& u^{i} u_{i}=\xi^{i} \xi_{i}=1-\alpha^{2}, \quad u^{i} \xi_{i}=0, \tag{210}
\end{align*}
$$

and for another two Sasakian structures the similar relations are obtained.
The equations (2.8)-(2. 10) show that (Φ, g, u, ξ, α) is a so called ($f . g, u$, v, λ)-structure in M. (See [6]). Thus we have now three (f, g, u, v, λ)-structures $(\Phi, g, u, \xi, \alpha),(\Psi, g, v, \eta, \beta)$ and $(\theta, g, w, \zeta, \gamma)$ in M.
Applying again Φ, Ψ and θ to (2.2) and taking account of (1.7), (2.3) and (2.6), we get
(2.11)
(2.12)

$$
\begin{aligned}
& \dddot{\Psi}_{j}{ }^{h} \Theta_{h}{ }^{i}=+\Phi_{j}{ }^{i}+v_{j} w^{i}+\eta_{j} j^{i}, \quad \theta_{j}{ }^{h} \Pi_{h}{ }^{i}=-\Phi_{j}{ }^{i}+w_{j} v^{i}+\zeta_{j} \eta^{i}, \\
& \theta_{j}{ }^{h} \Phi_{h}{ }^{i}=+\pi_{j}{ }^{i}+w_{j} u^{i}+\zeta_{j} \xi^{i}, \quad \Phi_{j}{ }^{h} \Theta_{h}{ }^{i}=-\Psi_{j}{ }^{i}+u_{j} w^{i}+\xi_{j} \xi^{i}, \\
& \Phi_{j}{ }^{h} \mathbb{W}_{h}{ }^{i}=+\theta_{j}{ }^{i}+u_{j} v^{i}+\xi_{j} \eta^{i}, \quad \Psi_{j}{ }_{j} \Phi_{h}{ }^{i}=-\theta_{j}{ }^{i}+v_{j} u^{i}+\eta_{j} \xi^{\xi^{i}} ; \\
& v_{i} \theta_{j}{ }^{i}=-u_{j}+\beta \zeta_{j}, \quad w_{i} \overline{I V}_{j}{ }^{i}=u_{j}+\gamma \eta_{j}, \\
& w_{i} \Phi_{j}{ }^{i}=-v_{j}+\gamma \xi_{j}, \quad u_{i} \theta_{j}{ }^{i}=v_{j}+\alpha \zeta_{j}, \\
& z_{i} \Psi_{j}{ }^{i}=-w_{j}+\alpha \eta_{j}, \quad v_{i} \Phi_{j}{ }^{i}=w_{j}+\beta \xi_{j} .
\end{aligned}
$$

Applying again $\dot{\varphi}, \phi$ and θ to (2.3) and taking account of (1.7), (2.2), (2.3) and (2.6), we find

$$
\begin{equation*}
u^{i} v_{i}=-\alpha \beta, \quad v^{i} w_{i}=-\beta \gamma, \quad w^{i} u_{i}=-\gamma \alpha \tag{2.13}
\end{equation*}
$$

Applying ϕ, ϕ and θ to (2.6) and using (1.6), (2.2), (2.3) and (2.6), we obtain

$$
\begin{array}{ll}
\eta_{i} \theta_{j}{ }^{i}=\xi_{j}-\beta w_{j}, & \zeta_{i} \|_{j}^{i}=-\xi_{j}-\gamma v_{j}, \\
\zeta_{i} \Phi_{j}^{i}=\eta_{j}-\gamma u_{j}, & \xi_{i} \theta_{j}^{i}=-\eta_{j}-\alpha w_{j}, \\
\xi_{i} \Psi_{j}^{i}=\zeta_{j}-\alpha v_{j}, & \eta_{i} \Phi_{j}{ }^{i}=-\zeta_{j}-\beta u_{j}, \\
w^{i} \zeta_{i}=-w^{i} \eta_{i}=\alpha, & w^{i} \xi_{i}=-u \psi_{i} \zeta_{i}=\beta, \quad u^{i} \eta_{i}=-v^{i} \xi_{i}=\gamma . \tag{2.15}
\end{array}
$$

The triple $\{(\Phi, g, u, \xi, \alpha),(\Psi, g, v, \eta, \beta),(\Theta, g, w, \zeta, \gamma)\}$ of (f, g, u, v, λ)-structures satisfying (2.11)-(2.15) is called a 3 -structurc. We denote by $\left\{\begin{array}{l}\lambda \\ \nu\end{array}\right\}$ the Christoffel symbols constructed from the given Riemannian metric $\tilde{g}_{\lambda_{k}}$ in \widetilde{M} and by $\left\{{ }_{j}{ }_{i}\right\}_{\}}$those constructed from the metric $g_{j i}$ induced in the hypersurface M. We denote by $h_{j i}$ the second fundamental tensor of the hypersurface M and
put $h^{i}{ }_{j}=g^{i k} h_{k j}$. Then, the equations of Gauss and Weingarten are given respectively by

$$
\begin{align*}
& \nabla_{j} B_{i}{ }^{2}=\partial_{j} B_{i}{ }^{\lambda}+\left\{{ }_{\mu}{ }^{\lambda} \nu\right\rangle B_{j}^{\nu} B_{i}{ }^{\mu}-\left\{{ }_{j}{ }^{h}\right\} B_{h}{ }^{\lambda}=h_{j i} C^{\lambda}, \tag{2.16}\\
& \nabla_{j} C^{\lambda}=\partial_{j} C^{2}+\left\{{ }_{\mu}{ }^{2}{ }_{\nu}\right\}{ }^{2} B_{j}{ }^{2} C^{\mu}=-h_{j}{ }^{i} B_{i}{ }^{\lambda} . \tag{2.17}
\end{align*}
$$

Differentiating (2.4), (2.5) and (2.6) covariantly along M and taking account of (2.16) and (2.17), we have

$$
\begin{gather*}
\nabla_{j} \Phi_{i}{ }^{h}=-h_{j i} u^{h}+h_{j}^{h} u_{i}-g_{j i} \xi^{h}+\delta_{j}^{h} \xi_{i}, \tag{2.18}\\
\nabla_{j} u_{i}=-h_{j i} \Phi_{i}^{t}-\alpha g_{j i}, \tag{2.19}\\
\nabla_{j} \xi_{i}=\Phi_{j i}+\alpha h_{j i}, \tag{2.20}
\end{gather*}
$$

and for another two Sasakian structures the similar relations are obtained.

§ 3. Hypersurfaces with 3-structure

As preliminalies, we recall the definitions of quasinormal and normal of an (f, g, u, v, λ)-structure.
We now put

$$
\begin{align*}
S[\Phi, \Phi]_{j i}{ }^{h} & =[\Phi, \Phi]_{j i}{ }^{h}+\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right) u^{h}+\left(\nabla_{j} \xi_{i}-\nabla_{i} \xi_{j}\right) \xi^{k}, \\
S[\Psi, \Theta]_{j i}= & =[\Psi, \Theta]_{j i}^{h}+\left[\nabla_{j} v_{i}-\nabla_{i} v_{j}\right) w^{h}+\left(\nabla_{i} w_{j}-\nabla_{i} w_{j}\right) v^{k} \tag{3.1}\\
& +\left(\nabla_{j} \eta_{i}-\nabla_{i} \eta_{j}\right) \zeta^{h}+\left(\nabla_{j} \xi_{i}-\nabla_{i} \zeta_{j}\right) \eta^{h},
\end{align*}
$$

where $[\Phi, \Phi]$ is the Nijenhuis tensor formed with Φ and $[\Phi, \theta]$ the Nijenhuis tensor formed with $\Psi, \boldsymbol{\theta}$ respectively. Similarily, we define $S[\Psi, \Psi], S[\theta, \theta]$, $S[\theta, \Phi]$ and $S[\Phi, \Psi]$ for the other tensors.

An (f, g, u, v, λ)-structure (Φ, g, u, ξ, α) is said to be quasi-normal if the condition.

$$
\begin{equation*}
S[\Phi, \Phi]_{j i h}-\left(\Phi_{j}{ }^{t} \Phi_{t i h}-\Phi_{i} \Phi_{t j h}\right)=0 \tag{3.2}
\end{equation*}
$$

is satisfied, where

$$
\begin{equation*}
\Phi_{j i h}=\nabla_{j} \Phi_{i h}-\nabla_{i} \Phi_{h j}-\nabla_{i} \Phi_{j i} \tag{3.3}
\end{equation*}
$$

The structure (Φ, g, u, ξ, α) is said to be normal if this structure satisfies

$$
\begin{equation*}
S[\Phi, \Phi]=0 . \tag{3.4}
\end{equation*}
$$

In the following we study some properties on a hypersurface with the induced 3-structure of a manifold with Sasakian 3-structure.
Substituting (2.18), (2.19) and (2.20) into (3.1), we get

$$
\begin{align*}
& S[\Phi, \Phi]_{j i}{ }^{h}=\left(\Phi_{j}{ }^{t} h_{t}{ }^{h}-h_{j}{ }^{t} \Phi_{t}{ }^{h}\right) u_{i}-\left(\Phi_{i}{ }^{t} h_{t}{ }^{h}-h_{i}{ }^{\star} \Phi_{t}{ }^{h}\right) u_{j}, \tag{3.5}\\
& S[\Psi, \Theta]_{j i}{ }^{h}=\left(\Psi_{j}{ }^{t} h_{t}^{h}-h_{j}{ }^{t} \mathbb{T}_{t}^{h}\right) w_{i}-\left(\Psi_{i}{ }^{t} h_{t}^{h}-h_{i}{ }^{t} \Psi_{t}^{h}\right) w_{j} \\
& +\left(\Theta_{j}{ }^{t} h_{t}^{h}-h_{j}{ }^{t} \Theta_{t}{ }^{h}\right) v_{i}-\left(\theta_{i}{ }^{t} h_{t}{ }^{h}-h_{i}{ }^{t} \Theta_{t}{ }^{h}\right) v_{j} .
\end{align*}
$$

By the first equation of (3.5), (3.4) is equivalent to the commutativity of Φ and h on a hypersurface of a Sasakian manifold.

The following Lemma A is known ([6]).
Lemma A. Let $M(>2)$ be an orientable connected hypersurface of a Sasakian manifold \tilde{M}. If one of Φ, Ψ and Θ commute h and $\alpha^{2} \neq 1$ (resp. $\beta^{2} \neq 1$ or r^{2} $\neq 1$) almost everywhere, then the hypersurface M is totally umbilical.

Substituting (2.18) into (3.4), we find $\Phi_{j i h}=0$. Thus the equation (3.3) shows that the structure (Φ, g, u, ξ, α) is normal on the hypersurface M.

So we have the following from Lemma A and (3.5)
PROPOSITION 3. 1. Lei M be a hypersurface with a 3 -structure $\{(\Phi, g, u, \xi, \alpha)$, $(\Psi, g, v, \eta, \beta), \quad(\Theta, g, w, \zeta, \gamma)\}$ of a Sasakian manifoled. If one of $3(f, g, u, v, \lambda)-$ structures $(\Phi, g, u, \xi, \alpha),(\Psi, g, v, \eta, \beta)$ and $(\Theta, g, w, \zeta, \gamma)$ is a normal on M, then the others are so also.

Proposition 3.2. Under the same assumptions as thase in Lemma A, all of $S[\Phi, \Phi], S[\Psi, \Psi], S[\theta, \Theta], S[\Psi, \theta], S[\theta, \Phi]$ and $S[\Phi, \Psi]$ are vanished.

Now we prove
PROPOSTILION 3. 3. If the vectors u^{h}, v^{h} and w^{h} for the induced 3-structure on a hypersurface of a Sasakian 3-structure manifold are linearly independent alm ost everywhere, and if $S[\Psi, \theta]=0$, then Ψ and Θ are normal.

Proof. From the second equation of (3.2), we have

$$
\begin{align*}
& \left(\Psi_{j}{ }^{t} h_{t}^{h}-h_{j}{ }_{j}^{t} \Psi_{t}^{h}\right) w_{i}+\left(\Theta_{j} t h_{t}^{h}-h_{j}{ }^{t} \Theta_{t}^{h}\right) v_{i} \\
& =\left(\Psi_{i}^{t} h_{t}^{h}-h_{i}^{t} \Psi_{t}^{h}\right) w_{j}+\left(\Theta_{i} h_{t}^{h}-h_{i}^{t} \Theta_{t}^{h}\right) v_{j} \tag{3.7}
\end{align*}
$$

Transvecting (3.7) with v^{i} and w^{i} respectively and using (2.10) and (2.13), we obtain

$$
\begin{align*}
& \left(\Psi_{j}^{t} h_{t h}-h_{j}{ }^{t} \mathbb{F}_{t h}\right)(-\beta \gamma)+\left(\Theta_{j}^{t} h_{t h}-h_{j}^{t} \Theta_{t h}\right)\left(1-\beta^{2}\right) \tag{3.8}\\
& =\beta^{\prime} v_{j} v_{k}+\gamma^{\prime} w_{j} w_{h}, \\
& \left(\mathbb{I}_{j}^{t} h_{t h}-h_{j}^{*} \Psi_{t h}\right)\left(1-\gamma^{2}\right)+\left(\Theta_{j}^{t} h_{t h}-h_{j}^{t} \Theta_{t h}\right)(-\beta \gamma) \tag{3.9}\\
& =\beta^{\prime \prime} v_{j} v_{b}+\gamma^{\prime \prime} w_{j} w_{h},
\end{align*}
$$

where $\beta^{\prime}, \beta^{\prime \prime}, \gamma^{\prime}$ and $\gamma^{\prime \prime}$ are defined respectively by

$$
\begin{aligned}
& \beta^{\prime} v_{h}=v^{i}\left(\Theta_{i}^{t} h_{t h}-h_{i}^{t} \Theta_{t h}\right), \quad \gamma^{\prime} w_{h}=v^{i}\left(\Psi_{i}^{t} h_{t h}-h_{i} \Psi_{t h}\right), \\
& \beta^{\prime \prime} v_{h}=w^{i}\left(\Theta_{i}^{t} h_{t h}-h_{i}^{t} \Theta_{t h}\right), \quad \gamma^{\prime \prime} w_{h}=w^{i}\left(\Psi_{i}^{t} h_{t h}-h_{i} \Psi \Psi_{t h}\right) .
\end{aligned}
$$

Eliminating the terms of $w_{j} w_{h}$ from (3.8) and (3.9), we get

$$
\begin{gathered}
{\left[\left(1-\gamma^{2}\right) \gamma^{\prime}+\beta r \gamma^{\prime \prime}\right]\left(\Psi_{j}^{t} h_{t h}+\Psi_{h}^{t} h_{t j}\right)-\left[\left(1-\beta^{2}\right) \gamma^{\prime \prime}+\beta r r^{\prime}\right]} \\
\times\left(\Theta_{j}^{t} h_{t h}+\Theta_{h}{ }^{t} h_{t j}\right)=\left(\beta^{\prime \prime} \gamma^{\prime}-\beta^{\prime} \gamma^{\prime \prime}\right) v_{j} v_{h} .
\end{gathered}
$$

from which, by transvecting $g^{j h},\left(\beta^{\prime \prime} \gamma^{\prime}-\beta^{\prime} \gamma^{\prime \prime}\right)\left(1-\beta^{2}\right)=0$.
Since v^{h} and w^{h} are linearly independent almost everywhere, i. e.,

$$
\left|\begin{array}{cc}
1-\beta^{2} & -\beta \gamma \\
-\beta \gamma & 1-\gamma^{2}
\end{array}\right| \neq 0 \quad \text { almost everywhere. }
$$

This together with (3.8) and (3.9) show that Ψ and Θ commute with h. Hence Ψ and Θ are normal structure.

Bibliography

[1] Ishihara, S., On a tensor field $\phi_{i}{ }^{h}$ satisfying $\phi= \pm 1$. Tōhoku Math. J. 13 (19 61), 443-454.
[2] Kuo, Y. Y., On almost contact 3-structure. Tōhoku Math. J. 22 (1970), 325-3 32.
[3] Watanabe, Y., Totally umbilical surfaces in normal contact Riemannian manifolds. Kōdai Math. Sem. Rep. 19 (1967), 474-487.
[4] Yamaguchi, S., On hypersurfaces in Sasakian manifolds. Ködai Math. Sem. Rep. 21 (1969), 64-72.
[5] Yano, K., and Ki, U-H., Manifolds with antinormal (f, g, u, v, λ)-structure. Kōdai Math. Sem. Rep. 25 (1973), 48-62.
[6] Yano, K., and Okumura, M., On (f, g, u, v, λ)-structure. Ködai Math. Sem. Rep. 24 (1972), 106-120.

Taegu Teachers College

