THE MAXIMAL SUBGROUPS IN L(H)

By SA-GE LEE

H.P. Decell, Jr. and C.L. Wiginton characterized the maximal subgroups of the matrix algebra of all $n \times n$ complex matrices [4]. Motivated by their work [4], we extend their result in the setting of L(H), the algebra of all bounded operators on a Hilbert space H.

The next Lemma 1 was obtained in [3] (P.675 Theorem 1) for the case $\dim (H) = n$, and in [1] (P.551 Proposition 2.3 (g), (k)), [2] (P.421 Theorem 1) for the general case.

LEMMA 1. Let $T \in L(H)$. If Range (T) is closed, then the next four simultaneous equations have a unique solution X in L(H), called the generalized inverse of T and denoted by T^+ .

(1) TXT=T (2) XTX=X (3) $(TX)^*=TX$ (4) $(XT)^*=XT$. Moreover TT^+ is the orthogonal projection onto Range(T) and T^+T is that onto $Range(T^*)$. Also $Range(T^+)=Range(T^*)$ and these two linear subspaces are closed. Conversely, the single condition (1) guarantees the closedness of Range(T).

The proof of the next lemma is elementary and omitted.

LEMMA 2. Let E and F be two idempotent elements of L(H). If Range(E) = Range(F), then there is an invertible element $P \in L(H)$ such that $P^{-1}EP = F$. Furthermore P can be chosen so that EP = F.

The following theorem generalizes theorem 2, P. 676 and Corollary, P. 677 in [4].

THEOREM 3. Let E denote an orthogonal projection on H and let $M(E) = \{T \in L(H) : Range(T) = Range(T^*) = Range(E)\}$. Then G is a maximal subgroup of L(H) if and only if $G = P^{-1}M(E)P$ for a suitable orthogonal projection E and invertible operator P. In this circumstance, the inverse of $T \in G$ in G is T^+ .

Proof. (Sufficiency) For each $T \in M(E)$, note that ET = T and $ET^* = T^*$, so that ET = T = TE. Hence E serves as the identity of M(E). Let $T, S \in M(E)$, then $Range(E) = Range(T) = Range(TE) = Range(TSS^+) \subset Range(TS)$

 $\subset \text{Range}(T) = \text{Range}(E)$, by Lemma 1. It follows that Range(TS) = Range(E). By the similar reason, Range $(S^*T^*) = \text{Range}(E)$, since $S^*, T^* \in M(E)$. Therefore, TS = M(E), proving M(E) is closed under multiplication. To see that $T^+ \in M(E)$, we first note that $(T^+)^* = (T^*)^+$, by using Lemma 1. Therefore, again with the aid of Lemma 1, Range $(T^+)^*=\text{Range}(T^*)^+=\text{Range}$ $(T^*)^* = \operatorname{Range}(T) = \operatorname{Range}(E) = \operatorname{Range}(T^*) = \operatorname{Range}(T^+)$. Hence $T^+ \in M(E)$. It follows that M(E) is a group. Now let K be a subgroup of L(H) such that $M(E) \subset K$. Let F be the identity element of K and E^{-1} the inverse of E in K. Then $F = EE^{-1} = E^2E^{-1} = E(EE^{-1}) = EF = E$. It follows that $TT^{-1} = E$. Now $Range(E) = Range(TT^{-1})$, $Range(T) = Range(ET) \subset Range(E)$. By the fact that $M(E) \subset K^*$ and that K^* is a group, we can similarly show that Range $(T^*)=\operatorname{Range}(E)$. Hence $T\subseteq M(E)$. The maximality of $P^{-1}M(E)P$ follows immediately. (Necessity) Let G be a maximal subgroup of L(H) with the identity F. Let E be the orthogonal projection onto Range(F). By Lemma 2, there is an invertible operator $P \in L(H)$ such that $F = P^{-1}EP$. Then G and $P^{-1}M(E)P$ are two maximal subgroups of L(H) with the common identity F. Therefore, $G=P^{-1}M(E)P$. Q. E. D.

References

- [1] W. J. Kammerer and M. Z. Nashed, Iterative methods for best approximate solutions of linear integral equations of the first and second kinds. J. Math. Analysis and Appl. 40 (1972) 547-573.
- [2] W.V. Petryshyn, On generalized inverse and uniform convergence of $(I-\beta K)^*$ with applications to iterative methods. J. Math. Analysis and Appl. 18 (1967) 417-439.
- [3] R. Penrose, A generalized inverse for matrices. Cambridge Philos. Soc. Proc. 51 (1955) 406-413.
- [4] H.P. Decell, Jr. and C.L. Wiginton, A characterization of the maximal subgroups of the semigroup of $n \times n$ complex matrices. Czechoslovak Math. J. 18 (1968) 675-677.

Seoul National University