A GENERALIZATION OF STRATIFIABLE SPACES

By Youngso Ko

As a generalization of stratifiable spaces, Creede [4] introduces semi-stratifiable spaces. This class of spaces lies between the class of semi-metric spaces and the class of perpect spaces (closed sets are G_{δ}).

In what follows, all spaces are assumed to be T_1 unless otherwise mentioned and the set of positive integers is denoted by N.

A topological space X is said to be *semi-stratifiable* if, to each open set $U \subset X$, one can assign a sequence $\{U_n : n \in N\}$ of closed subsets of X such that (a) $\bigcup_{n=1}^{\infty} U_n = U$, (b) $U_n \subset V_n$ whenever $U \subset V$. (If, in addition, the space X satisfies (c) $\bigcup_{n=1}^{\infty} Int(U_n) = U$, then X is called *stratifiable* [2].)

Creede [4] has shown that a topological space X is semi-stratifiable if and only if there exists a function g from $N \times X$ into the collection of open sets of X such that

- (1) for each $x \in X$, $\{g(n, x) : n \in N\}$ is a nonincreasing sequence such that $\bigcap_{n=1}^{\infty} g(n, x) = \{x\}$ and
- (2) if y is a point of X and $\{x_n : n \in N\}$ is a sequence of points in X with $y \in g(n, x_n)$ for all $n \in N$, then $\{x_n : n \in N\}$ converges to y.

A topological space X is called a *semi-metric* space if there is a distance function d defined on X such that

- (1) $d(x, y) = d(y, x) \ge 0$,
- (2) d(x, y) = 0 if and only if x = y and
- (3) x is a limit point of a set M if and only if d(x, M) = 0. The space X is said to be *symmetric* if d satisfies conditions (1), (2) and the following condition instead of (3).
 - (3') A subset M is closed if and only if d(x, M) > 0 for each $x \in (X-M)$. Heath [5] showed the following

Theorem (Heath). A T_1 -space is a semi-metric space if and only if it is a first countable semi-stratifiable space.

LEMMA (Heath). A necessary and sufficient condition that a topological space

X be semi-metric is that there exists a function g from $N \times X$ into the collection of open sets of X such that

- (1) for each $x \in X$, $\{g(n, x) : n \in N\}$ is non-increasing sequence which forms a local base for the topology at x, and
- (2) if $y \in X$ and $\{x_n : n \in N\}$ is a sequence of points in X such that, $y \in g(n, x_n)$ for each $n \in N$, then $\{x_n : n \in N\}$ converges to y.

Now we consider a class of spaces with the following condition (*). A topological space X has a function g from $N \times X$ into the collection of subsets of X which satisfies

- (1) for each $x \in X$, $\{g(n, x) : n \in N\}$ is a non-increasing sequence of subsets such that $x \in \bigcap_{n=1}^{\infty} g(n, x)$,
- (2) if $y \in X$ and $\{x_n : n \in N\}$ is a sequence of points in X such that, $y \in g$ (n, x_n) for each $n \in N$, then $\{x_n : n \in N\}$ converges to y and
- (3) a subset M is closed if, for any $x \in (X-M)$, there exist an open set U containing x and a positive integer n such that $U \cap g(n,x) \cap M = \phi$.

It is clear that the semi-stratifiable spaces satisfy the condition (*).

THEOREM 1. A T_2 -space X is semi-metric if and only if it is first countable and satisfies the condition (*).

Proof. The necessity is clear. To prove the sufficiency, let f be a function from $N \times X$ into the collection of open sets of X such that $\{f(n,x):n \in N\}$ is non-increasing local base at x. Such a function exists since X is first countable. Let g be the function in condition (*), and $h(n,x)=f(n,x) \cap g(n,x)$. Then, by the previous Lemma, it is sufficient to show that $x \in Int[h(n,x)]$, for any $n \in N$ and $x \in X$. Suppose that there exist $k \in N$ and $x \in X$ such that $f(n,x) - h(n,x) \neq \phi$ for each $n \in N$. Then for each $n \in N$, we can choose $x_n \in [f(n,x) - h(n,x)]$. Since $\{x_n:n \in N\}$ converges to x and x is $x_n \in N$ such that $x \in N$ is closed. Hence for any $x \in X$, there is $x \in N$ such that $x \in N$ is closed. Hence for any $x \in X$ for any $x \in X$. This means that $x \in X$ is closed. But $x \in x \in X$. This is a contradiction.

THEOREM 2. A topological space X is symmetric if and only if there is a function g from $N \times X$ into the collection of subsets of X which satisfies

(1) $\{g(n,x):n\in\mathbb{N}\}\$ is non-increasing local net at x (i.e. $x\in\bigcap_{n=1}^{\infty}g(n,x)$

and for any neighborhood U of x, there is $n \in \mathbb{N}$ such that $g(n, x) \subset U$,

- (2) if y is a point of X and $\{x_n : n \in N\}$ is a sequence of points in X with $y \in g(n, x_n)$ for all $n \in N$, then $\{x_n : n \in N\}$ converges to y and
- (3) a subset M is closed if, for any $x \in (X-M)$, there exists $n \in N$ such that $g(n,x) \cap M = \phi$.

Proof. Necessity. Let d be the distance function and $g(n,x) = \{y \in X : d(x, y) < \frac{1}{n}\}$. Then clearly $\{g(n,x) : n \in N\}$ is a non-increasing local net at x. Hence, for any $n \in N$, $y \in g(n,x_n)$ means $\{x_n : n \in N\}$ converges to y since $x \in g(n,y)$ if and only if $y \in g(n,x)$. The remaining part is clear.

Sufficiency. Let $m(x,y)=min\{j\in N:y\oplus g(j,x)\}$, and define a distance function d for X as follows: if $x\in X$, d(x,x)=0; if x and y are two points of X $d(x,y)-min\{1/m(x,y),\ 1/m(y,x)\}\ (=1/min\{j\in N:y\oplus g(j,x) \text{ and } x\oplus g(j,y)\})$. Clearly d(x,y)=d(y,x), and $d(x,y)\geq 0$. It remains to prove that a subset M is closed if and only if d(x,M)>0 for any $x\in (X-M)$. If there is $x\in (X-M)$ such that d(x,M)=0, then there exists a sequence $\{x_n:n\in N\}$ in M such that $d(x,x_n)<\frac{1}{n}$, for each $n\in N$. Hence $min\{j\in N:x_n\oplus g(j,x)\}$ and $x\oplus g(j,x_n)\}>n$, for each $n\in N$. This means that $x_n\oplus g(n,x)$ or $x\oplus g(n,x_n)$, for each $n\in N$. Therefore we can show that $x\oplus cl\{x_n:n\in N\}$. Since $cl\{x_n:n\in N\}$ colored.

Conversely, assume that M is not closed, then there exists a point $x \in (X-M)$ such that $g(n,x) \cap M \neq \phi$ for each $n \in N$. This means that there is a sequence $\{x_n : n \in N\}$ in M such that $d(x,x_n) < \frac{1}{n}$ for each $n \in N$. Hence d(x,M) = 0.

From the above Theorems, it is clear that any symmetric space satisfies the condition (*), and hence we have

COROLLARY (Burke). A T_2 -space X is semi-metric if and only if it is first countable and symmetrizable.

Thus, Theorem 1 is a formal generalization of Theorem (Heath) and the above Corollary. In fact a space with the condition (*) is distinguished from the semi-stratifiable spaces as shown in the following

EXAPLE 3. In [1] Bonnett gives an example of a symmetrizable space which

is not perpect. This space is not semi-stratifiable, but it satisfies the condition (*).

References

- [1] D. A. Bonnett, A symmetrizable space that is not perpect, Proc. A. M. S. 34 (1972) 560-564.
- [2] C. J. R. Borges, On stratifiable spaces, Pac. J. Math. 19(1966) 1-16.
- [3] D. K. Burke, On p-spaces and ωΔ-spaces, Pac. J. Math. 35(1970) 285-296.
- [4] G. D. Creede, Concerning semi-stratifiable spaces, Pac. J. Math. 32(1970) 47-54.
- [5] R.W. Heath, Arcwise connectedness in semi-metric spaces, Pac. J. Math. 12 (1962) 1301-1319.

Seoul National University