AN APPLICATION OF PROPER MAPS ON TOPOLOGICAL GROUPS

By J. Michael Bossert and Kwang-Chul Ha

We outline in this paper an application of proper maps on some topological groups. A simple application of the maps is as follows: if C is a topological group and H is a compact subgroup of G, then the natural map ϕ of G onto G/H is a closed map; therefore, ϕ is a proper map, and hence, G is compact if G/H is.

DEFINITION. ([1], p. 97) Let f be a map of a topological space Z into a topological space Y. f is said to be *proper* if f is continuous and $f \times i_z : X \times Z \rightarrow Y \times Z$ is closed for all topological spaces Z, where i_z is the identity map on Z.

LEMMA 1. ([1], p. 101) Let $f: X \rightarrow Y$ be continuous. Then the following two statements are equivalent:

- a) f is proper
- b) f is closed and $f^{-1}(y)$ is compact for each y in Y.

LEMMA 2. ([1], p. 104) Let $f: X \rightarrow Y$ be a proper mapping, and let K be a compact subset of Y. Then $f^{-1}(K)$ is compact.

The following is an application of the above lemmas to prove a theorem in [2] ([2], (5.23 p.38) which avoids the use of nets.

THEOREM. Let F be a topological group, H a subgroup of G, and ϕ the natural mapping of G onto the left-coset space G/H. Suppose that U is a symmetric neighborhood of the identity e such that the following hold:

- i) $(\bar{U}^3)^- \cap H$ is compact
- ii) $\{xH:x\in X\}$ is a closed compact subset of G/H and
- iii) $\{xH: x \in X\} \subset \{uH: u \in U\}$.

Then $\bar{U} \cap XH$ is closed and compact in G.

Proof. $XH = \phi^{-1}$ ($\{xH: x \in X\}$) is closed; hence, $\bar{U} \cap XH$ is closed. Consider the restriction $\psi = \phi \mid \bar{U} \cap XH$. By iii) $\psi(\bar{U} \cap XH) = \phi(X)$.

Thus, $\phi: \overline{U} \cap XH \rightarrow \phi(X)$ is a continuous surjection. Since the range is com-

pact, Lemma 2 will imply the domain is compact, as soon as we show that ϕ is proper, i.e., by Lemma 1, that ϕ is closed and $\phi^{-1}(\tilde{y})$ is compact for each \tilde{y} in $\phi(X)$.

I) $\phi^{-1}(\tilde{y})$ is compact for each \tilde{y} in $\phi(X)$:

Let $\tilde{y} \in \phi(X)$. Then $\tilde{y} = \{yH\}$ for some y in \bar{U} .

$$\phi^{-1}(\tilde{y}) = (\bar{U} \cap XH) \cap \phi^{-1}(\tilde{y}) = (\bar{U} \cap XH) \cap (y \cdot H) = \bar{U} \cap (y \cdot H) =$$

$$= y \cdot [(y^{-1}\bar{U}) \cap H] = y \cdot [(y^{-1}\bar{U}) \cap (\bar{U}^{3-} \cap H)]$$

Thus, $\psi^{-1}(\tilde{y})$ is a translate of the intersection of a closed set and a compact set; hence, is compact.

II) ϕ is a closed mapping:

Let C be any closed set in $(\bar{U} \cap XH)$.

Let $\tilde{x} \in \phi(x) \setminus \phi(C)$. Then $\tilde{x} = \{x_0 H\}$ for some x_0 in \bar{U} , and $(x_0 \cdot H) \cap (C \cdot H) = \phi^{-1}(\{\tilde{x}\} \cap \phi(C)) = \phi$.

Let $A = (\bar{U}^3)^- \cdot x_0 \cdot (A \cap H)$ is a translate of a compact set; hence, is compact, and is disjoint from the closed set C. Since G is a topological group, there exists an open symmetric neighborhood V of the identity e such that $V \subset U$ and

*
$$\lceil V \cdot x_0 \cdot (A \cap H) \rceil \cap C = \phi$$
 (see Theorem (4.10) of $\lceil 2 \rceil$)

Then $\phi(V \cdot x_0) = \{vx_0H : y \subseteq V\}$ is an open neighborhood of \tilde{x} in G/H, and $\phi(V \cdot x_0) \cap \phi(X)$ is a relatively open neighborhood of \tilde{x} in the subspace $\phi(X)$. Let us now show that $[\phi(V \cdot x_0) \cap \phi(X)] \cap \phi(C) = \phi(V \cdot x_0) \cap \phi(C) = \phi$:

If not, then there exists a $v \in V$, $h \in H$ and $c \in C$ such that $vx_0h = c$. But then $h = x_0^{-1}v^{-1}c \in U^{-1} \cdot V^{-1} \cdot \bar{U} \subset \bar{U}^3 \subset A$ and so $h \in A \cap H$, and $c \in [V \cdot x_0 \cdot (A \cap H)] \cap C \neq \phi$. This would contradict (*).

Thus, the complement of $\psi(C)$ is open in $\phi(X)$, $\psi(C)$ is closed in $\phi(X)$, and ψ is a closed mapping.

References

- [1] Bourbaki, General Topology.
- [2] Hewitt and Ross, Abstract Harmonic Analysis.

Sacramento State College Illinois State University