
J. Korean Math. Soc.
Vo!. 12, NO.2, 1975

ON THE VECTOR VALUED MEASURES

By T AE-GEUN CHO

107

The first striking theorem on the range of a vector valued measure was Liapounoff's
theorem [5J appeared in 1940 which says that the range of a measure with values in a
finite dimensional vector space is compact and when the measure is atomfree the range is
also convex. Then in 1948 Halmos [4J somewhat simplified the proof of the Liapounoff's
theorem. In 1966 Lindenstrauss [6J shortened the proof of the theorem drastically. Olech
[7] in 1968 investigated the range of unbounded vector valued measure, on the same
year Rieffel [8J generalized the Radon-Nikodym theorem to vector valued measures emp­
loying the Bochner integral. In 1969 Uhl [1OJ showed that a vector valued measure with
bounded variation whose values are either in a reflexive space or in a separable dual space
has a precompact range, moreover, if the measure is atomfree the range is convex. Fin­
ally, in 1973 A. Tong and the author [1] extended RieffeI's Radon-Nikodym theorem
and UbI's result on the range of a Banach space valued measure. We generalize in this
note the result on the range of a vector valued measure in [lJ to the measure with its
values in a Frechet space.

Let Z be a a-algebra of sets. By a vector valued measure we mean a countably add­
itive set function defined on Z whose values in a topological vector space.

We begin with the Liapounoff's theorem.

THEOREM CLiapounoff). Let Ph P2, "', Pn be real-valued atomfree measures on a a-algebra
Z. Then the set of points in Rn of the form CPICE), P2CE), ''', PnCE» where EEZ is
compact and convex. [5J, [9J.

In the proof of this theorem the Radon-Nikodym theorem does an important role. In
fact if we define

where Ipj I is the total variation of pj, then each pj is absolutely continuous with respect
to P and there exist functions /; in Ll (p) such that dpj=/;dfl.. This fact enables us to
show that the linear operator T: L~(fl.)--Rn defined by

T(g) = [fgf1dp, f gf~p, •..... fgf.dp ~

for each bounded p-measurable real valued functions, is weak* continuous. For the deta­
iled proof the reader may consult [6J or [9].

When p: Z--B is a vector valued measure where B is either a reflexive Banach space
or a separable dual space Dunford-Pettis theorem [3J guarantees the existance of a B-va-

lued l,u I-integrable function f such that p(E) =tfdfl. for all E in 2:. Uhl utilized this
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theorem to show the compactness of the closure of the range of /l.

THEOREM (UhI). Let B he a Banach space which is either reflexive or separable dual.
If p. : Z-B is a measure of bounded variation, then the range 01" ,J is precompaet in B.
Morever if p. is atomfree. the closure of the range of /l is compact convex. [10J.

Although the conditions for his theorem seem to be rather complicated Rieffel is belie­
ved to be the first mathematician to generalize Radon-Nikodym theorem for Bochner int­
egral to a general Banach space.

THEOREM (Rieffel). Let (X, Z, p.) be a a-finite positive measure space and let B be a
Banach space. Let m he a B-valued measure on Z. Then m is the indefinite integral with
respect to p. of aB-valued Bochner integrable function on X if and only if

(1) m(E) =0 whenever p.(E) =0, EEZ
(2) the total variation, Im I, of m is a finite measure,
(3) given EEZ with O</l(E)<oc there is an FEE such that p.(F»O and

AF(m) = tm(F') / p.(F') : F'eF, p.(F'»O}

is precompaet. [8J.

The condition (3) has been slightly improved in the following theorem.

THEOREM (Cho-Tong) A. Let (X, Z, p.) he a a-finite measure space. Let m: Z-B be a
B-valued measure where B is a Banach space. Then m is the indefinite integral with res­
pect to p. of a Bochner integrable function f : X-B if and only if

(1) m(M) =0 whenever p.(M) =0, MEZ
(2) m has a finite total variation
(3) given MEZ with O<p.(M) <00, there is a set NEZ such that p.(N»O, NeM

and N satisfies the following condition: if {N;} is any sequence of disjoint (non null)

measurable sets in N, then {m (N;) / p.(N;) : i=l, 2, ···1 is a precompact set. [lJ.

Also the following theorem slightly generalizes the OhI's theorem.

THEOREM (Cho-Tong) B. Let (X, Z, p.) be a finite measure space and let m : Z-B a B­

valued measure where B is a Banach space. If the set

lm(M;)!p.(Mj) : p.(Mj»O and MjEZ}

is precompaet for each sequence {Mj } of disjoint measurable sets, then the range of m is
precompact. Cl].

We will generalize in the following the above Theorem B to an F -valued measure wh

ere F is a Frechet space.

LEMMA 1. Let (X, Z, p.) he an atomfree positive measure space and let T: L1(p.)-F
he a continuous linear operator where F is a Frechet space. For each positive real number
a difine R(a)={XM/p.(M) MEZ,O<p.(M)<a} where XM is the characteristic function-
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of M Then
(1) for all a, fJ with O<a<fJ, R(fJ) is a suhset of convex hull of R(a),
(2) R(f3) is a precompact set if and only if there is a Positive real number a less therr

fJ such that R(a) is a precompaet set.

Proof. (1) Let M be a measurable set with O<tt(M)<fJ. There is a disjoint decompo­
sition {Mh M2, "', M.} of M where M;E2 and O<.u(M;)<a, i=l, 2, ,n. Hence, .u(M)
=2:'1p.(M;) and 2t~1 .u(M;) 1.u(M) =1. Now

T('xMI .u(M» =2;_1 (.u(M;) I.u(M» T(xMI.u(M;»

is a member of the convex hull of R(a).
(2) In a Frechet space the closed convex hull of a compact set is compact[9J. There­

fore, if R(a) is precompact, then its convex hull is also precompact and by (1) R(f3)

should be a precompact set for all fJ with O<a<f3.

LEMMA 2. Let AI~A2~'" be a sequence of nonprecompact bounded sets in a Frechet space
X such that the convex hull of A,,+! contains A", n=l, 2, ••••...... Then there exists a fixed
positive constant c such that none of A; is covered by a finite number of e:-balls.

Proof. Since each A; is not precompact but bounded there exists a sequence {c.} of
positive numbes such that A" can not be covered by a finite number of c,,-balls wherease
it can be covered by a finite number of (2c,,)-balls. Suppose that c" converges to zero as
n tends to 00 and let 0 be an arbitrary positive number. Without loss of generality we
may assume e"+1<c". Choose a convex neighborhood Vof 0 in X such that V+ Vc::
B(O, c), where B(O, 0) is the o-ball with the center at 0, then choose a sufficiently large
n such that B(O,2c,,)C::V. By the choice of e" there exists a finite set E= {eh e2, ••••••, e..}
such that A.cE+ V. Let El be the convex hull of E, then El is compact. Let xEAl.

1

Since the cnvex hull of A", contains Al x can be written as x= L;t;x; where x; EA", t;":?
i=1

1

0, i=l, 2, 3, "', k, and L:t;=l. For each i, there is an element y; of E such that x;-.y;
i=1

EV. Writing
1 i

x=D;y;+ L;t;(x;-y;)
i=1 ;=1

we see that xEEI +V. Therefore AlcEl +V. But El is compact and there is a finite set

F such that E1cF+ V, and hence we have

AlcEl + VcF+ V+ VcF+B(O, 0)

and Al is totally bounded which contradicts the hypothesis. Therefore e" does not conver­
ge to zero as n tends to 00 and by the same argument e. has no sulsequence converging­
to zero and hence there exists the required constant e>O.

THEOREM 1. Let(X, 2, /1-) be an atomfree positive measure space and let F be a Frechet
space. Then a buunded linear operator T: Ll(tt)-F is compact if and only if the set
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is precompaet for every sequence of disjoint measurable sets {Mi }.

Proof. Since the convex hull of R(a) contains the union of all of the R({J) for all (J
>a by lemma 1 and simple functions are dense in the unit sphere of V(p.) it is enough
to show that there is a positive real number a such that R(a) is precompact

Suppose the contrary, then none of R(+), n=l, 2, "', is precompact and by lemma 2

there is a constant e>O such that none of R(+) can be covered by a finite number

of .s-balls B(Yi,e) = {yEF: d(Yi, Y) <cl. Let YIER(l). By induction choose a sequence

{Y;}i:! such that YnER(+)"'U,:1B(Yi,e). Each Yi is apart at least the distance of e

and the sequence has no convergent subsequence. Since Yn E R (+) there is a measurable

set M n such that

and

p(Mn) <l, n=1,2, .
n

Choose a subsequence {ail of {p(Mn)} such that

Let ai=p(Mnw ), and difine a sequence {Ni} of disjoint measurable sets by

Then

IIXNd p(Ni) -XMn<i>! p(Mn(iJ) 11

=1- peN;) / p(Mn(o+p( U j>;Mn(j» 1p(Mn(;»

<3/2i.

Therefore,

as i-+co and the sequence T(XNd p(N;» has no convergent subsequence which contradicts
the hypothesis.

CoROLLARY 2. Let (X, Z, p) be an atomfree positive measure space and let F be a Frechet
space. Then a measure m: Z-+F has a precompact range if the set {m(Ni)/p(Ni ) : NiE

Z, p(Ni»O} is precompact for every {Ni} of disjoint measurable sets.

Proof. Let the operator T: U(p.)-+F be a linear extension of m such that T (aXM+
(JXN) =am(M) +fim(N) for characteristic functions XM, MEZ. Then T is compact and
hence the range of m is precompact.
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