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ON THE VECTOR VALUED MEASURES
By TAE-GEUN CHO

The first striking theorem on the range of a vector valued measure was Liapounoff’s
theorem [5] appeared in 1940 which says that the range of a méasure with values in a
finite dimensional vector space is compact and when the measure is atomfree the range is
also convex. Then in 1948 Halmos [4] somewhat simplified the proof of the Liapounoff’s
theorem, In 1966 Lindenstrauss [6] shortened the proof of the theorem drastically. Olech
[7] in 1968 investigated the range of unbounded vector valued measure, on the same
year Rieffel [8] generalized the Radon-Nikodym theorem to vector valued measures emp-
loying the Bochner integral. In 1969 Uhl {107 showed that a vector valued measure with
bounded variation whose values are either in a reflexive space or in a separable dual space
has a precompact range, moreover, if the measure is atomfree the range is convex. Fin-
ally, in 1973 A. Tong and the author [1] extended Rieffel’'s Radon-Nikodym theorem
and Uhl’s result on the range of a Banach space valued measure. We generalize in this
note the result on the range of a vector valued measure in [1] to the measure with its
values in a Fréchet space.

Let Z be a g-algebra of sets. By a vector valued measure we mean a countably add-
itive set function defined on 3 whose values in a topological vector space.

We begin with the Liapounoff’s theorem.

THeEOREM (Liapounoff). Let py, ps, **=, s be real-valued atomfree measures on a 0-algebra
2. Then the set of points in R* of the form (u(E), pe(E), -, u,(E)) where E€Z is
compact and convex. [5],[9].

In the proof of this theorem the Radon-Nikodym theorem does an important role. In
fact if we define

=] L] - pral

where |y;| is the total variation of g, then each p;is absolutely continuous with respect
to ¢ and there exist functions f; in L*(y) such that du;=fidy. This fact enables us to
show that the linear operator T : L=(u)—R”" defined by

T(@)=| [ehdn [afudn - [efdu
for each bounded p-measurable real valued functions, is weak* continuous. For the deta-
iled proof the reader may consult [6] or [9].

When p: X—B is a vector valued measure where B is either a reflexive Banach space
or a separable dual space Dunford-Pettis theorem [3] guarantees the existance of a B-va-

lued |p{-integrable function f such that p(E) :.[E fdu for all E in ¥. Uhl utilized this
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theorem to show the compactness of the closure of the range of .

THEOREM (Uhl). Let B be a Banach space which is either reflexive or separable dual.
If p: Z—B is a measure of bounded variation, then the range o* . is precompact in B.
Morever if i is atomfree, the closure of the range of i is compact convex. [10].

Although the conditions for his theorem seem to be rather complicated Rieffel is belie-
ved to be the first mathematician to generalize Radon-Nikodym theorem for Bochner int-
egral to a general Banach space.

TueoreM (Rieffel). Ler (X, 2, p) be a o—finite positive measure space and let B be a
Banach space. Let m be a B—valued measure on =. Then m is the indefinite integral with
respect to p of a B-valued Bochner integrable function on X if and only if

(1) m(E)=0 whenever u(E)=0, EcZX

(2) the total variation, |m|, of m is a finite measure,

(3) given E€Z with 0<u(E)< cc there is an FEE such that 1(F)>0 and

Ap(m)=m(F")[p(F’) : F'CF, p(F)>0}
is precompact. [8].
The condition (3) has been slightly improved in the following theorem.

THEOREM (Cho-Tong) A. Let (X, 2, u) be a 6-finite measure space. Let m: 2—B be a
B-valued measure where B is a Banach space. Then m is the indefinite integral with res-
pect to p of a Bochner integrable function f: X—B if and only if

1) m(M)=0 whenever p(M)=0, M

(2) m has a finite total variation

(3) given MeZX with 0<u(M)<co, there is a se¢ N2 such that p(N) >0, N=M
and N satisfies the following condition: if {Nj} is any sequence of disjoint (non null)
measurable sets in N, then {m(N;)/u(N;) :i=1,2, -} is a precompact set. [1].

Also the following theorem slightly generalizes the Uhl’s theorem.

TueoreM (Cho-Tong) B. Let (X, Z, 1) be a finite measure space and let m : Z—B a B—
valued measure where B is a Banack space. If the set

im(Mp) [ (M) = p(M) >0 and M; <2}
is precompact for each sequence (M.} of disjoint measurable sets, then the range of m is
precompact. [1].

We will generalize in the following the above Theorem B to an F-valued measure wh
ere F is a Fréchet space.

LemMA 1. Let (X, Z, u) be an atomfree positive measure space and let T : Li(y)—F
be a continuous linear operator where F is a Fréchet space. For each positive real number
a difine R(a)={Xy/p(M) McZ, 0<u(M)<a} where Xy is the characteristic function
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of M. Then

(1) for all @, 8 with 0<a<f, R(B) is a subset of convex hull of R(a),

(2) R(B) is a precompact set if and only if there is a positive real number a less then
B such that R(e) is a precompact set.

Proof. (1) Let M be a measurable set with 0<{p(M)<(B. Thereisa disjoint decompo-
sition {My, My, -+, M} of M where M;€X and 0<u(M;)<a, i=1,2, ,n. Hence, 2(M)
=2Lu(M;) and 37, p(M;)/p(M)=1. Now

T(ea/ (M) =27x ((M) /(M) T (xaa/ (M)

is a member of the convex hull of R(a).

(2) In a Fréchet space the closed convex hull of a compact set is compact[9]. There-
fore, if R{a) is precompact, then its convex hull is also precompact and by (1) R(F)
should be a precompact set for all g with 0<la<8.

LEMMA 2. Let Ay-DAyD-- be a sequence of nonprecompact bounded sets in a Fréchet space
X such that the convex hull of A,y contains A,, n=1,2, ++seres- . Then there exists a fixed
positive constant € such that none of A; is covered by a finite number of eballs.

Proof. Since each A; is not precompact but bounded there exists a sequence {g} of
positive numbes such that A, can not be covered by a finite number of ¢-balls wherease
it can be covered by a finite number of (2¢,)-balls. Suppose that ¢, converges to zero as
n tends to oo and let & be an arbitrary positive number. Without loss of generality we
may assume £,1;< 6, Choose a convex neighborhood V of 0 in X such that V+ Vo
B(0,¢), where B(0, 8) is the d-ball with the center at O, then choose a sufficiently large
n such that B(0, 2:,) V. By the choice of ¢, there exists a finite set E= {e,, €g, -++--- + €m}
such that A,—E+V. Let E; be the convex hull of E, then E, is compact. Let z<A,.

Since the cnvex hull of A, contains 4, z can be written as xzit;xi where ;€ 4,, ti>
i=f
0, i=1,2,3,--- % and }_i.'lt,:l. For each 7, there is an element y; of E such that z;—y;
&V. Writing
'] 3
1=‘_=thiy£+§lti(xi“yi)

we see that £ E,+ V. Therefore A;=E;+ V. But E, is compact and there is a finite set
F such that E;CF+V, and hence we have

ACE 4+ VCF+V+VCF+B(0,d)

and A, is totally bounded which contradicts the hypothesis. Therefore ¢, does not conver-
ge to zero as z tends to oo and by the same argument ¢, has no suksequence converging
to zero and hence there exists the required constant £>0.

THEOREM 1. Let(X, 2, p) be an atomfree positive measure space and let F be a Fréchet
space. Then a bounded lincar operator T : L'(u)—F is compact if and only if the set

{T s/ (M) : MEZ, (M) >0}
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is precompact for every sequence of disjoint measurable sets {M;}.

Proof. Since the convex hull of R(a) contains the union of all of the R(8) for all 8
>a by lemma 1 and simple functions are dense in the unit sphere of L'(y) it is enough
to show that there is a positive real number « such that R{a) is precompact.

Suppose the contrary, then none of R(%), n=1, 2, ---, is precompact and by lemma 2
there is a constant ¢>0 such that none of R(—;ll—) can be covered by a finite number
of e-balls B(y;e)={yeF :d(y;,y)<e}. Let ym<R(1). By induction choose a sequence
{y:} 1 such that y,,ER(—i—)NU’:;{B( ¥i,€). Each y; is apart at least the distance of ¢
and the sequence has no convergent subsequence. Since y,,eR(——;—> there is a measurable

set M, such that
V=T Oanl £(M,)), n=1,2, -2+

and
©(M,) <~717, n=1,2, oeeee
Choose a subsequence {a} of {#(M,)} such that
@;:1<27%;

Let a;=u(M,»), and difine a sequence {N;} of disjint measurable sets by
Ni=Myi)— U jpiMyipp
Then
il 6UND) — xstner ) (M) |l

=1—u(N)/ (Mo + 20U o iMaip) [ (M ciy)

=3/2.
Therefore,

T(enil £(N2)) — T (Emtnear [ 1My, ) — 0

as i—co and the sequence T (yn:/¢(n:)) has no convergent subsequence which contradicts
the hypothesis.

COROLLARY 2. Let (X, 2, p) be an atomfree positive measure space and let F be a Fréchet
space. Then a measure m : Z—F has a precompact range if the set {m(N;)/pu(N;) : N;&
2, u(N:)>0} is precompact for every {NJ of disjoint measurable sets.

Proof. Let the operator T : L'(gx)—F be a linear extension of m such that T (ayxu+
Bxxn) =am(M) +pm(N) for characteristic functions yy, M&Z2. Then T is compact and
hence the range of m is precompact.
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