RESTRICTED DOUBLE AUTOMORPHISMS OF THE SPACE OF ANALYTIC DIRICHLET FUNCTIONS

By P. K. KAMTHAN AND S. K. SINGH GAUTAM*

1. (a) Introduction. Let C be the complex plane equipped with its usual topology. Let X be the family of all Dirichlet functions with abscissa of convergence and absolute convergence greater than or equal to A>0 (see [4], page 33). For each $f \in X$, define

$$p(\sigma,f) = \sum_{n=1}^{\infty} |a_n| e^{\sigma \lambda_n}, \text{ where } f(s) = \sum_{n=1}^{\infty} a_n e^{s \lambda_n}, s = \sigma + it \in \mathbb{C},$$

where σ is arbitrary and < A. Clearly, this defines a semi-norm on X. Denote by (X, \overline{O}) , the space X equipped with the locally convex topology \overline{O} generated by the family $\{p(\sigma,\cdots):\sigma< A\}$ of semi-norms. We consider another space (Y, \mathcal{Q}) , $Y\subset X$, equipped with a certain Fréchet topology \mathcal{Q} which is stronger than the topology induced on Y by \overline{O} . The main aim of this paper is to construct restricted double automorphisms (see definition below) on X and Y. Throughout we assume that X and Y stand for locally convex spaces mentioned just now unless something else is stated regarding them.

If X is a topological vector space and Y is its subspace equipped with a topology stronger than the induced topology on Y from X, then an automorphism T on X and Y means a linear homeomorphic mapping of X onto itself while a restricted double automorphism on X and Y is a mapping T such that T is an automorphism on X and $T \mid Y$ (restriction of T on Y) is an automorphism on Y.

A base in the space X is a sequence α_n in X such that every element f in X is uniquely represented as follows:

$$(1.1) f = \sum_{n=1}^{\infty} a_n \alpha_n,$$

where $\{a_n\} \subset C$. A basis $\{\alpha_n\}$ in X is said to be *proper base* if for all sequences $\{a_n\}$ of complex numbers

$$\sum_{n=1}^{\infty} a_n \alpha_n \text{ converges in } X \Longleftrightarrow \sum_{n=1}^{\infty} a_n \delta_n \text{ converges in } X,$$

where $\delta_n(s) = e^{s\lambda_n}$. A characterization of a proper base has already been established by us in our paper [3] in terms of the following conditions:

$$\lim_{n \to \infty} \sup_{\sigma} \frac{\log p(\sigma, f)}{\lambda_n} < A, \text{ for all } \sigma < A;$$

and

$$\lim_{\sigma \to A} \{ \lim_{n \to \infty} \inf \frac{-\log p(\sigma, f)}{\lambda_n} \} \ge A.$$

Received by the editors Apr. 1, 1975. (*) The research work of this author has been supported by C. S. I. R. Senior Research Fellowship No. 7/92(323)/73-GAU I.

In the construction of a continuous linear map on X that we have in our mind, we shall need the following result which we have proved elsewhere in [2]:

LEMMA 1. A necessary and sufficient condition that there exists a continuous linear transformation $T: X \rightarrow X$ with $T \delta_n = \alpha_n$, $n=1, 2, \cdots$ is that the condition (α) holds.

1. (b) Construction of continuous linear map on X.

We now proceed to construct a continuous linear map on X. Let $\{\alpha_n\}$ be a proper basefor X and $\{\phi_n\} \subset X$ be any sequence satisfying

$$\lim_{n\to\infty}\sup \frac{-\log p(\sigma,\phi_n)}{\lambda_n} < A, \text{ for all } \sigma < A.$$

Then for each $f \in X$, there exists a unique sequence $\{a_n\}$ of complex numbers such that

$$\sum_{n=1}^{N} a_n \alpha_n \to f \text{ in } X, \text{ as } N \to \infty,$$

and

$$\lim_{n\to\infty} \sup \frac{\log |a_n|}{\lambda_n} \le -A.$$

Now by (α') , given $\sigma < A$, there exists $\varepsilon > 0$ and an integer $N_1 = N_1(\sigma, \varepsilon)$ such that

$$p(\sigma, \phi_n) \leq e^{(A-\varepsilon)\lambda_n}$$
, for all $n \geq N_1$

$$\Longrightarrow \sum_{n=1}^{n} |a_n| p(\sigma, \phi_n)$$
 converges in $(X, \tilde{\theta})$ for each $\sigma < A$.

Hence $\sum_{n=1}^{\infty} a_n \phi_n$ is absolutely convergent and so convergent in (X, \mathcal{T}) . Thus with the above conditions imposed on $\{\alpha_n\}$ and $\{\phi_n\}$, we can define a mapping $P: X \to X$, as follows.

$$(1.3) P(f) = \sum_{n=1}^{\infty} a_n \phi_n, f = \sum_{n=1}^{\infty} a_n \alpha_n.$$

It is seen that P is continuous, for taking into account (α') , there exists a $\sigma_1 < A$ such that

$$p(\sigma, \phi_n) < e^{\sigma_1 \lambda_n}$$
, for all $n \ge N$,

and hence there exists a constant k>0, such that

$$p(\sigma, \phi_n) \le ke^{\sigma_1 \lambda_n}$$
, for all $n \ge 1$
= $kp(\sigma_1, \delta_n)$, for all $n \ge 1$.

Now, since $\{\alpha_n\}$ and $\{\delta_n\}$ are proper bases for X,

$$\sum_{n=1}^{\infty} a_n \, \delta_n \, \longleftrightarrow \, \sum_{n=1}^{\infty} a_n \, \alpha_n$$

is a topological isomorphism (see lemma 1 and Theorem 2. 2, [2]). Hence there exist constants k_2 , M and numbers σ_2 and σ_3 , such that

$$p(\sigma_1, \delta_2) \leq k_2 p(\sigma_2, \alpha_n)$$
; and $p(\sigma_2, \alpha_n) \leq Mp(\sigma_3, \delta_n)$.

Hence

$$p(\sigma, \phi_n) \leq kp(\sigma_2, \alpha_n), k = k_1k_2$$

$$\implies \|pf\| \leq k \sum_{n=1}^{\infty} |a_n| p(\sigma_2, \alpha_n)$$

$$= k \sum_{n=1}^{\infty} p(\sigma_2, \alpha_n \alpha_n) = k M \sum_{n=1}^{\infty} p(\sigma_3, \alpha_n \delta_n)$$

$$= k M p(\sigma_3, f)$$

$$\implies p \text{ is continuous.}$$

2. Continuity condition for mapping of X into Y.

In this section our concern lies in determining when the map P becomes a continuous linear map from (X, \mathcal{T}) into (Y, \mathcal{C}) . Let us assume that $\{\|\cdot\|_{\nu}, \nu=1, 2, \cdots\}$ stands for the family of semi-norms which generate the topology.

THEOREM 1. A necessary and sufficient condition for P to be a continuous linear map from (X, \overline{o}) into (Y, Q) is that all ϕ_n belongs to Y and

(2.1)
$$\limsup_{n\to\infty} \frac{\log \|\phi_n\|_{\nu}}{\lambda_n} < A \ (\nu=1, 2, \cdots).$$

The expansion in (1.3) then converges in Y for all $f \in X$.

Proof. Let $\phi_n \in Y$ and (2.1) hold good. Then there exists $\varepsilon > 0$, such that

$$\|\phi_n\|_{\nu} < e^{(A-\varepsilon)\lambda_n}$$

for all $n \ge N$. We can find a constant k such that

(2.2)
$$\|\phi\|_{\nu} \leq ke^{((A-\varepsilon)\lambda_n}, \text{ for all } n \geq 1.$$

Now any $f \in X$ can be represented as

$$f = \sum_{n=1}^{\infty} a_n \alpha_n$$

where $\{\alpha_n\}$ is a proper base for X. Therefore by (1.2), choosing $\hat{o} < \varepsilon$, it follows that

$$|a_n| \le e^{(-A+\delta)\lambda_n}$$
, for all $n \ge N$.

Hence the series $\sum_{n=1}^{\infty} a_n \phi_n$ converges (indeed absolutely) in (Y, Q). Hence the map $P: (X, \overline{0}) \to (Y, Q)$ is well defined. Let $\|\cdot\|_{\nu}$ be an arbitrary given but fixed semi-norm on Y. Then for this ν , we have by (2.2), for $f \in X$

$$||Pf||_{\nu} \le k \sum_{n=1}^{\infty} |a_n| e^{(A-\varepsilon)\lambda_n}$$
$$= k \phi(A-\varepsilon, f).$$

Hence P is a continuous linear operator from (X, \mathcal{C}) into (Y, \mathcal{Q}) .

Conversely, assume that P is a continuous linear operator from (X, \mathcal{T}) into (Y, \mathcal{Q}) . Clearly then $\{\phi_n\} \subset Y$. Consider any sequence $\{a_n\} \subset C$, such that, $\sum_{n=1}^{\infty} a_n \alpha_n$ converges in (X, \mathcal{T}) .

$$\implies a_n \alpha_n \to 0 \text{ in } (X, \mathcal{T})$$

$$\implies P(a_n \alpha_n) \to 0 \text{ in } (Y, \mathcal{Q}).$$

Hence

(2.3)
$$|a_n| ||\phi_n||_{\nu} \to 0$$
 as $n \to \infty$, for each $\nu = 1, 2, \cdots$

Suppose (2.1) is not true. Then for some semi-norm $\|\cdot\|_{\nu}$, there exists a sequence $\{r_l\}$, with $r_1 < r_2 < \cdots < r_l \to A$ as $l \to \infty$ such that

$$(2.4) \qquad \frac{\log \|\phi_{n_l}\|_{\nu}}{\lambda_{n_l}} > r_l.$$

Define a sequence $\{a_n\}$ of complex numbers as follows:

$$a_n = \begin{cases} \frac{1}{\|\phi\|_{\nu}}; & n=n, \ l=1, 2, \cdots \\ 0; & n\neq n, \ l=1, 2, \cdots \end{cases}$$

Then from (2.4) and this choice of a_n , it follows that

$$\lim_{n\to\infty} \sup \frac{\log |a_n|}{\lambda_n} \le -A$$

$$\implies \sum_{n=1}^{\infty} a_n \alpha_n \text{ converges in } (X, \mathcal{F})$$

$$\implies |a_n| ||\phi||_{\nu} \to 0 \text{ as } n \to \infty \text{ in } (Y, \mathcal{Q}), \text{ by } (2.3).$$

But this is contradicted by the fact that $|a_n| ||\phi_n||_{\nu} = 1$, for $n = n_l$. This completes the proof.

If we restrict the class Y, then a simpler condition for P to be continuous linear map can be established as stated in the following theorem.

THEOREM 2. Suppose Y consists for all functions $g(\in X)$ of the form $g = \sum_{n=1}^{\infty} a_n \phi_n$ for which $\sup_{\sigma < A} [p(\sigma, \phi_n)] < \infty$, and the topology on Y is weaker than that determined by the sup norm. If the functions $\phi_n(n=1, 2, \cdots)$ belong to Y and are uniformly continuous in the

half-plane $\sigma < A$, then P is a continuous linear mapping from X into Y.

Proof. Let P_{μ} ($-\infty < \mu < 0$) be a mapping from X into Y defined by

$$(P_{\mu}f)(\sigma+it)=Pf(\mu+\sigma+it), \ \sigma < A.$$

Thus

$$(P_{\mu}f)(\sigma+it)=\sum_{n=1}^{\infty}a_{n}\dot{\varphi}_{n}^{n}(\sigma+it),$$

where

$$\phi_n^u(\sigma+it) = \phi_n(\sigma+\mu+it), \quad \sigma < A, \quad n=1, 2, \cdots$$

From the condition (α') we get,

$$\lim_{n\to\infty}\sup \frac{\log ||\phi_n^{\mu}||_{\mu}}{\lambda_n} < A.$$

In fact, since the topology on Y is weaker than that induced by the sup norm, therefore given any ν , there exists a constant k, such that

$$||\phi_n^{\mu}|| \le k ||\phi_n^{\mu}||$$

where

$$\|\phi_n^{\mu}\| = \sup_{\sigma \leq A} \sup_{-\infty \leq t \leq \infty} |\phi^{\mu}(\sigma - it)| \}.$$

Hence given $\varepsilon < 0$, there exists a $\sigma < A$, such that

$$\begin{aligned} \|\phi_n^{\mu}\| &< \sup_{-\infty < t < \infty} |\phi_n^{\mu}(\sigma + it)| + \varepsilon \\ &\leq p(\sigma + \mu, \phi_n) + \varepsilon \\ &\leq e^{(A + \mu)\lambda_n} + \varepsilon \\ &= e^{(A + \mu)\lambda_n} \{1 + 0(1)\} \\ &\Longrightarrow \lim_{n \to \infty} \sup_{-\lambda_n} \frac{|\log \|\phi_n\|_{\infty}}{\lambda_n} < A, \end{aligned}$$

for $\nu \ge 1$, and for each μ , $-\infty < \mu < 0$. This, by Theorem 1, implies that P_{μ} maps X continuously into Y. Clearly the family P_{μ} ($-\infty < \mu < 0$) is pointwise bounded, since $\|P_{\mu}f\| \le \|Pf\|$, for all μ and each $f \in X$. Hence by Banach-Steinhaus Theorem ([1], p. 55, Theorem 18), this family is uniformly bounded. Moreover the uniform continuity of ϕ_n implies that

$$\lim_{\mu \to 0} |\phi_n(\mu+z) - \phi_n(z)| = 0, \quad z = \sigma + it, \quad \sigma < A.$$

$$\implies \lim_{\mu \to 0} |P_\mu \delta_n(\sigma + it) - P \delta_n(\sigma + it)| = 0$$

84

Hence

$$\lim_{\mu \to 0} \ \|P_{\mu} \delta_n - P \delta_n \| = \lim_{\mu \to 0\delta} \ \{ \sup_{\sigma < \lambda} \sup_{-\infty < i < \infty} \ |P_{\mu} \delta_n (\sigma + it) - P \delta_n (\sigma + it) | \} = 0, \quad n = 1, 2, \cdots,$$

i.e., $\{P_{\mu}\}$ converges to P on a total subset of X. Hence P is a continuous linear mapping of X into Y.

3. Construction of restricted double automorphisms.

In this section we confine our attention to the two sequences $\{\alpha_n\}$ and $\{\beta_n\}$ in X for which the function

$$\phi_n = \beta_n - \alpha_n,$$

belongs to Y and satisfies (2.1). Then corresponding to any prescribed seminorm $\|\cdot\|_{\nu}$ on Y, there exists a number ρ , such that

(3.2)
$$\limsup_{n\to\infty} \frac{\log \|\phi_n\|_{\nu}}{\lambda_n} \leq \rho < A,$$

holds. Since the topology on Y is stronger than that induced by X on Y, to each given $\sigma < A$, there corresponds a constant K and a positive integer ν , such that

$$(3.3) p(\sigma, f) \le k ||f||_{\nu}, ext{ for all } f \in Y.$$

From (3.2) and (3.3), it follows that for any $\sigma < A$, there are positive constants M and $\rho < A$, such that

$$(3.4) p(\sigma,\phi_n) \leq Me^{\rho\lambda_n}, \quad n=1,2,\cdots$$

In view of these observations, we prove that following result.

LEMMA 2. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be sequences in X for which the function ϕ_n of (3.1) belongs to Y $(n=1, 2, \cdots)$ and satisfies (2.1). Then the sequence $\{\beta_n\}$ satisfies the condition (α) if and only if $\{\alpha_n\}$ does.

Proof. Let us assume that $\{\alpha_n\}$ satisfies the condition (α) . Then there exists a constant $\rho_1 < A$, such that

$$\lim_{n\to\infty}\sup \frac{\log p(\sigma,\alpha_n)}{\lambda_n}<\rho_1,$$

we also have

$$p(\sigma, \beta_n) \le p(\sigma, \alpha_n) + p(\sigma, \phi_n)$$
, for all $\sigma < A$.

By (3.3) given σ , there exists a ν and a constant k such that

$$p(\sigma, \phi_n) \leq k ||\phi_n||_{\nu}$$

By (2.1), given ν , there exists a constant $\rho_2 < A$, such that

$$\lim_{n\to\infty}\sup\frac{\|\phi_n\|_{\nu}}{\lambda_n}<\rho_2< A.$$

$$\implies \|\phi_n\|_{\nu}\leq e^{\rho_2\lambda_n}, \text{ for all } n\geq N$$

$$\implies p(\sigma, \phi_n) \leq ke^{\rho_2 \lambda_n}, \text{ for all } n \geq N.$$

Choose $\rho = \max(\rho_1, \rho_2)$, then

$$p(\sigma, \beta_n) \leq e^{\rho \lambda_n} + k e^{\rho \lambda_n} = (k+1)e^{\rho \lambda_n}$$

$$\implies \lim_{n \to \infty} \sup \frac{\log p(\sigma, \beta_n)}{\lambda_n} \leq \rho < A,$$

and so $\{\beta_n\}$ satisfies (α) . Hence the result follows by the symmetry of the given condition.

In the statement of the above lemma, if we replace the condition (α) by (β) , then the result is not necessarily true. For example, when Y=X then $\mathfrak{T}=\mathcal{G}$. Consider then

$$-\alpha_n(s) = \phi_n(s) = e^{s\lambda_n}, \quad n=1, 2, \cdots$$

If Y is taken to be a Banach space, then the above assertion is valid. In this connection, we prove the following lemma.

LEMMA 3. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be sequences in X for which the function ϕ_n of (3.1) belongs to Y(n=1,2,) and satisfies

(3.5)
$$\sup_{\nu \geq 1} \left\{ \lim \sup_{n \to \infty} \frac{\log \|\phi_n\|_{\nu}}{\lambda_n} \right\} < A.$$

Then the sequence $\{\beta_n\}$ satisfies condition (β) if and only if $\{\alpha_n\}$ does.

Proof. From hypothesis (3.5), it follows that we can find a number $\rho < A$ such that

$$\lim_{n\to\infty}\sup \frac{-\log \|\phi_n\|_{\nu}}{\lambda_n}<\rho,$$

for all $\nu \ge 1$, In view of (3.3), this in turn implies that for each $\sigma < A$,

$$\lim_{n\to\infty}\sup \frac{-\log p(\sigma,\phi_n)}{\lambda_n}<\rho.$$

Let us now assume that $\{\alpha_n\}$ satisfies condition (β) and λ be any number such that $\rho < \lambda < A$. For σ sufficiently near to A, we have then

$$\liminf_{n\to\infty} \frac{-\log p(\sigma,\alpha_n)}{\lambda_n} > \lambda.$$

Also relation (3.1) implies

$$p(\sigma, \beta_n) \ge p(\sigma, \alpha_n) - p(\sigma, \phi_n)$$

$$>e^{\lambda\lambda_n} - e^{\rho\lambda_n}$$
, for all $n \ge \operatorname{Max} (N_1, N_2)$
 $= e^{\lambda\lambda_n} (1 - e^{\langle \rho^{-\lambda \lambda} \lambda_n \rangle})$
 $\Longrightarrow \liminf_{n \to \infty} \frac{\log p(\sigma, \beta_n)}{\lambda_n} \ge A$
 $\Longrightarrow \lim_{n \to \infty} \left\{ \liminf_{n \to \infty} \frac{\log p(\sigma, \beta_n)}{\lambda_n} \right\} \ge A$

Hence, $\{\beta_{n}\}$ satisfies condition (β) and the other part of the lemma follows by symmetry.

Since condition (α) and (β) are necessary and sufficient for a basis in X to be proper, lemma 2 and lemma 3 gives rise to the following theorem.

THEOREM 3. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be bases in X for which the function $\{\phi_n\}$ of (3.1) belongs to Y $(n=1,2,\cdots)$ and satisfies (3.5). Then for $\{\beta_n\}$ to be proper, it is necessary and sufficient that $\{\alpha_n\}$ be proper.

Now our aim is to define restricted double automorphisms on X and Y. For this, we first state the following simple result, whose proof follows from the open mapping theorem ([1], p. 57).

LEMMA 4. Let T=S+P, where S is a restricted double automorphism on X and Y and P is a continuous linear mapping of X into Y. If T is an automorphism on X, then T is, in fact, a restricted double automorphism on X and Y.

THEOREM 4. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be proper bases in X and let T be the endomorphism mapping $\{\alpha_n\}$ on to $\{\beta_n\}$. If the function $\phi_n = \beta_n - \alpha_n$ belongs to Y $(n=1, 2, \cdots)$ and satisfies the condition

$$\lim_{n\to\infty}\sup \frac{-\log \|\phi_n\|_{\nu}}{\lambda_n} < A, \ (\nu=1,2,\cdots),$$

then T is a restricted double automorphism on X and Y.

Proof: Let for any function $f \in X$, its expansion in the basis $\{\alpha_n\}$ be given by

$$f = \sum_{n=1}^{\infty} a_n \alpha_n$$

Then Tf is given by

$$Tf = \sum_{n=1}^{\infty} a_n \beta_n$$
$$= \sum_{n=1}^{\infty} a_n \alpha_n + \sum_{n=1}^{\infty} a_n \phi_n.$$

If we denote the identity map by I, then T=I+P, where P is defined as in (1.4). But by theorem 1, P maps X continuously into Y and I is obviously a restricted double automorphism on X and Y. Using lemma 4, T becomes a restricted double automorphism

on X and Y. This completes the proof.

The following result immediately follows from Theorem 3.

COROLLARY 4.1. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be bases in X for which the function

$$\phi_n = \beta_n - \alpha_n$$

belongs to Y $(n=1, 2, \cdots)$ and satisfies the condition

$$\sup_{\nu \geq 1} \{ \lim \sup_{n \to \infty} \frac{\log \|\phi_n\|_{\nu}}{\lambda_n} \} < A.$$

If one of the given bases is proper, then both are proper, and the endomorphism T mapping $\{\alpha_n\}$ onto $\{\beta_n\}$ is a restricted double automorphism on X and Y.

References

- [1] Dunford, N. and Schwartz, J. T. Linear Operators: Part I General Theory (New York, 195 6).
- [2] Kamthan, P. K. and Gautam, S. K. Singh Certain Operators in the space of analytic Dirichlet transformations, Collect. Mathematica, Vol. 23-Fasc. 1*-(1972), 3-8.
- [3] Kamthan, P. K. and Gautam, S. K. Singh Bases in a certain space of functions analytic in the half-plane (To appear in Indian J. Pure and Applied Math.)
- [4] Markushevich, A. I. Theory of Functions of a Complex Variable, Vol. II Prentice-Hall, Inc., 1965.

Indian Institute of Technology Kanpur-208016, India.