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A NOTE ON C*-ALGEBRAS

By HYO--CHUL KWAK

1. Introduction.

Let A be a commutative C*-algebra with involution+, written + (x)=x+ for all xEA.
and let .J(A) be the set of all homomorphisms of A onto the field C of complex numbers.
Then .J(A) is isomorphic to the set {,u-l(O) : ,uE.J(A)} whose element is a regular Max­
imal ideal in A ([2J). .J (A) with the GeHand topology is called the regular maximal
ideal space of A. Let A be the set of all GeHand transforms of A.

Some works on ideals of a C*-algebra are found in [1] and [4J. The purpose of this
paper is to define a suh-C*-algebra of A (Definition 2. 1) and to prove some properties of
suh-C*-algebras (Theorem 2.4 and Proposition 2.3 and 2.5), in particular, that every
suh-C*-algebra of A is an intersection of some regular maximal ideals of A (Theorem
2.6). Furthermore, it will be proved that ,u(A)=C(.J(A) under some conditions (The­
orem 3.2), where,u (A) is the normed algebra of all bounded continuous functions ifJ on
.J(A) with ifJAcA, and C(.J(A» is the normed algebra of all bounded continous func­
tions from .d(A) to C.

2. Definition and preliminary theorems.

In the sequel, we assume that A is a commutative C*-algebra with a minimal appro­
ximate identity ([3J). Then A is semi-simple, seH-adjoint and A =Co(.J(A», where
Co(.d(A» is the normal algebra consisting of all bounded continuous complex-valued func­
tions on .J(A) vanishing at infinity ([2J). Let Cc(.J(A» be the algebra with supremum
norm consisting of all bounded continuous complex-valued functions on .J(A) with com·
pact supports. Then Cc(.J(A»cA ([2J). Moreover, if we denote Ao the derived algebra
of A, then A=Ao([2J).

DEFINITON 2.1 (Suh-C*-algebra) Let ~ be an ideal of A. If ~ satisfies the conditions:
(i) ~ is closed under involution operation (aE:~=>a+E~),

(ii) ~ is a Banach algebra under the same norm given to A, then it is called a sub­
C*-algebra of A.

For each ,uoE.J(2{), let mo=,uo·l(O) and define ,u(x)=,uo(ax)!flo(a), where XEA and
aE2{, atlimo. (Note that ~ is a C*-algebra).

Then fl is well-defined since ~ is an ideal of A. fleX) is independent of the choice of
a, because for a, bf!i; mo

/lo(xab) =flo(=)' flo (b) =flo(bx)· flo (a) ,

and so flo (ax) !flo(a) =/lo(bx)!flo(b).

PROPOSITION 2.2. fl. is in .J(A).
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Proof. For x,yEA p.(x+y)=p.(x)+p.(y) is obvious.

For a{£mo, p.(xY)=J1.o(a2xy)/J1.o(,r)

= (J1.o(ax) / J1.o(a»· (p.o (ay) / J1.o(a»

=p.(x)·p.(y).

Since P.o : ~-+C is an epimorphism, p.: A-+C is also an epimorphism. We define

H(~)=ag~{P.E.d(A) : p.(a)=O}.

Then H(~) is the hull of ~ in A, and H(~) is a closed subset of .d(A) in the weak*
and the hull-kernel topologies ([2J). Thus, .d(A)rvH(~) is an open subset of .1(A).

PROPOSITION 2.3. The correspondence p.o->p. defines a bijective mapping from .d(~O to
.1(A)rvH(~).

Proof. That this mapping is continous in the weak* and in the hull-kurnel topologies
([3J) is clear from the above definition. For p.f£;H(~) (i. e., there is at least an element

.a(4=0) in ~ such that p.(a)4=O) define

P.o : ~->C such that J1.o(a) =p.(a).

Then, for xEA, p.(xa)=p.(x)·p.(a)=p.(x)·p.o(a)=J1.o(ax), andsop.(x)=p.o(xa)/p.o(a).
This implies that our mapping is bijective.

If we define LJO(~)=.d(A)rvH(~), L1"(~) is homeomorphic to .d(~) in the weak*and
in the hull-kernel topologies, and

.d(A)=iF(~)UH(~).

Then we can prove that .10(~) is dense in .d(A) with the hull-kernel topology ([2J).
We summarize the above results as follows

THEOREM 2.4.

.d(A) = H (~) UL1" (~),

where H(~) is the hull of~ in A and .d0(~) is an open subset of .d(A) which is home­
omorphic to .d(~) in the weak* and in the kullkernel topologies. Moreover, in the hull­
kernel topology L1" (~) is dense in .d(A).

If we put ~o={aO: aE~}, where dJ(mo)=p.o(a)=li(m)=p.(a) for p.o->p., J1.o-1(0)=mo
and p.-l(O)=m, then we have the following.

PROPOSITION 2.5. If A has a minimal approximate identity, then following holds.
(i) m: is semi-simple and self adjoint,
(ii) m: is regular,
(iii) The mapping ti->li is an isometric isomorphism of ~{O into A in the usual SUP1t:­

mum norms on ~o and A.
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Proof. By the definition 2{ has an involution, i.e., aE2{ implies that a+E2{. For f1o~

p, mo=/lo-l(O) and m=/l-l(O), since ofJ(mo)=a(m) and A is seH-adjoint,

d'(mo)=a(m) and a+(m)=ao+(mo)

which implies that 2{ is seH-adjoint. fu5ume ofJ(Lf(2{»=O. Then, for /loELf(2{) and /lE
LfO(2{), where /lo~/l, we have /lo(a)=/l(a). Of course, for each vEH(2{), v(a)=O. Thus
a(Lf (A» =0, and it follows that a=O (by the semi-simplicity of A). Thus 2{ is semi­
simple.

Note that for a locally compact Hausdorff space S, Co(S) is a regular commutative
Banach algebra and Lf(Co(S»=S([3J). Since Lf(2{) is a locally compact Hausdorff space
([2J), Co(Lf(2I» is regular which means that the weak* topology and the hull-kernel
topology on Lf(Co(Lf(2{»)=Lf(2{) coincides. Therefore 2{ is re~lar.

Finally, for aE~

II 2{0 II 00=mo~~(2{) 12{° (me) I = m~U]O(2{) la(m)!

=m~](A) l!a(m)II=lIalloo.

THEOREM 2. 6. If A has a minimal approximate identity, then the Kernel K (H(2{»
of H (W) in Lf (A) is equal to W.

Proof. Obviously WeK(H(W». Take xEK(H(W». Then for each m'EH(W), x(m')
=0. We shall define¢ECo(Lf(2{» by¢(mo)=x(m) formo=/lo-l(O) andm=J.t(m), where

Lf (W) ="/lo- /lELfo (W) eLf (A),

Since aO=Co(Lf (W» (Note: 2{ is a commutative C*-algebra) there exists an element b in
W such that bO=¢. Noting bO (mo) =b (m) we have b=x, and by the semi-simplicity b=x.
Thus, K (H (W) ) cWo

EXAMPLE 2.7. Let Wl be a regular maximal ideal of A. Since A is semi-simple and
self-adjoint, for xEWl, x+(m)=x(m) =0. Therefore x+EWl implies that IDl is closed
under involution operation. If A has a minimal approximate identity and IDl is complete
with the same nonn as one of A, then Wl is a sub-G*-algebra of A, H (IDl) =Wl, and
Lf(Wl)=Co(Lf(Wl» C::::::Wl) is isometric and isomorphic to Lf(A),,-,{Wl} in the weak* and
hull-kernel topologies. In particular, by the previous theorem, every sub-e*-algebra is an
intersection of some regular maximal ideals.

Recall that A* is the dual space of A and that /leA) is the nonned algebra of all
bounded continuous fimctions 9 on Lf(A) such that qSAcA. We denote by C(Lf(A»
the normed algebra consisting of all bounded continuous complex-valued functions on
Lf (A). Then it is obvious that /leA) cC (Lf (A».

3. The main theorem.

We define <x, x*>=x*(x), where xEA and x*EA*

LEMMA. 3.1. If x*EA* is a continuous linear functional, there exists a unique

-complex-valued regular Borel measure /lx* on Lf (A) such that



8 Hyo-Chul Kwak

<xy, :x*>=J xY(m)dp.z* (m).
4<A)

. Furthermore, if x has a compact support, then

<x, X*>=J x(m)dp...*(m).
4<A) .

Proof. For x, yEA 'lxy/l~lIxll·llyll=IIYllcollxll.

Thus I<xy, x*> I~lIx*II·l/xyl/~lIxll*lIxll· /Iy/l=

and hence, for a fixed element x*EA* each XEA defines a continuous linear functional
on A whose value at y is <xy, x*>.
However, since A=Co(.J(A» this functional is defined on Co(..d(A».

H we denote by M(..d(A)) the linear space of all regular complex valued Borel mea­
sures on ..d(A) which have finite total mass [3J, then there exists a unique p.zEM(..d
(A» ([3J) such that

(3.1) <xy, x*>=J y(m)dp.Am)
4<A)

and 1Ip.,z/l<lIx*lIl1xll.
Also for x, zEA and all yEA, it is clear that

J yz(m)dp..zCm) =<xyz, x*>=<zyx, z*>
4<A)

=J yx(m)dp.,.(m).
LI<A)

By the uniqueness of measures, for each x, ZEA xp...=zp.z.
Let S...=;{IDlE..d(A) : x(IDl)=i=O} for each XEA.
Then S,z=..d(A)-{IDl}, where xEIDl, and since ..d(A) is Hausdroff, {IDl} is closed in A.
Thus S,z is open in ..d(A), and Sz is a locally compact subspace of L1(A). Therefore the
following integral is well-defined.

(3.2) f ¢(m) / x (m)dp..zCm),
$ ..

where ¢ECc(Sz). H K is a compact subset of Sz, we denote all these functions in Cc
(Sz) whose support lies in K by CcK (Sz). For each compact set K the above (3.2)
defines a continuous linear functional in the inductive limit topology on Cc(Sz) ([3J)
Hence there exists a unique complex-valued regular Borel measure p.~* on ([3J) such
that

Ss,.¢(m) /x(m) dp.Am)=JS.r¢(m)dp.;*(m)

for ¢EC,(Sz). {Sz: zEA} is an open covering of ..d(A), and xp.,,=zp.Ax, zEA) says
that p.;*=p.~* on Sz nS". Hence there exists a unique complex-valued regular measure
p.z* on ..d(A) such that
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From the above (3. 1)

<xx, x*>=J x(m)dJ1.z(m)=1 x (m) dJ1.z (m),
.4CA) S"

and by (3.2)

9

(3.3)
1

· </!(m)x(m)dJ1.z*(m)=1 ¢(m)dJ1.z(m),
s" Sz .

where XEA and ¢ECc(Sz).
By the definition of Sz it is clear that x is the uniform limit of a sequence {¢n} cCc

(8z ) , and thus

<xx, x*>=1 x(m)dJ1.z(m)=lim1 ¢(m)dJ1.z*(m)
Sz. ,. sz

=limf ¢,,(m)x(m)dJ1.z*(m)
• Sz

=1 Xi(m)dJ1.z*(m)
s"

=1 Xi(m)dJ1.z*(m).
4CA)

With the above equation and the identity

4.xy=(x+y)2_(X-y)2 for x,yEA,

we can easily conclude the following:

<xy, x*>=1 xY(m)dJ1.z*(m) for x, yEA.
4(A)

If the support of x is compact, then we can find a yEA such that x=xy ([2J). In
this case, by the semi-simplicity of A, x =xy. So

<x, x*>=<xy, x*>=J xY(m)dJ1.z(m) =1 x(m)dJ1.z*(m).
4(A) 4(A)

The fact that Cc(.1(A»cA ([2J) and the preceding equation is valid for all XEA
such that x has compact support implies that the measure J1.z* constructed for each
.-x*EA* is unique.

THEOREM 3.2. If the linear span of A2 is norm dense in A, then
J1.(A) =C (.1 (A».

Proof. We shall prove thisby using the previous lemma. At first we prove that the set
()f all zEA such that z has compact support is dense in A. We have already proved that
C c (.1(A»cA.

For xEA and e>O there exists an element yEA such that yECc (L1(A» and Ilx­
yll<e/llxll, since A=Co(.1(A». Since IIxy-x211<IIxlllly-xll=lIxllllx-YII<e, the
support of xy is compact, 4xy=(x+y)2_(X-y)2 and A2 is dense in A. Thus our
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assertion is true.
In order to prove our theorem it suffices to verify that A is an ideal of C (A (A) ), since­

,u(A)c:C(.1(A». According to this reason we have to prove that for ¢EC(.1(A» and
each XEA cjJi:EA.

For x*EA* and yEA with yECc(.d(A» we define

<y, (3 (x*) >=1 q,y(m)d,u:r:*(m),
4eA)

where ,u:r:* is the regular Borel measure constructed in the proof of the preceding lemma.
Since Cc(d(A»c:A and A is self-adjoint, if U(y)-.:::::>K(y) is an open set with compact
closure, then there exists a zEA with zECc(.d(A», £=1 on D(y) and 11£1100=1, where
K(y) is the compact support of y. Then

y=£y (z=l on K(y».

Since ¢Z has compact support, q,£ECc(L1(A». Thus there exists

z¢EA such that z¢=Z¢.

By the above lemma and our definition

(3.4) <Y, (3(x*»=L(A)Y¢(~)d,u:r:*(m)=Lwy£¢(m)d,u:r:*(m)

=<yz,p, x*>=twz¢(m)d,u,.(m).

Therefore we have
I<Y, (3 (x*)>I~1IZ¢lIooll,u,.Il~IIq,lIoollx*lIl1yll

for each yEA with yECc(L1(A» «3.1) in the proof of Lemma 3.1).
Thus, by the definition of (3(x*) and the above inequality (3.4) it is clear that

(3(x*) is a bounded linear functional on yEA with yECc(.1(A».
By the remark at the begining of our proof it follows that (3 (x*) can be uniquely ex­

tended to A without increasing norm. By the lemma 3. 1

<xy. X1*> +<xy, :l:2*>= <zy, X1*+X2*>

=f xy(m) d,uzl* (m) +f xY(m)d,ux.*(m)
4eA) 4W

= f xy(m)d(Jlxl*+Jlx.*) (m)
J4(A)

=1 xY(m)d,uXl*+X.*(m) ,
4(A)

and thus J.!x.*+ Jlx.*=Jlx.*+x.*, where Z1*' z2*EA* and XIo X2EA. This implies that
(3 : A*-A* is linear.

Let limllxn*-x*H=o and limll{3(zn*)-z*II=o. Then by the above (3.4) for any. .
yEA with yECc(.1(A» we have

I<y, {3 (x.*)>-<Y. (3(x*)>I= I<Y, (3(xn*-x*)>i
= 1<Y¢'o z.*-x*> I (y¢=z¢y)
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::::;;IIYpllllxn*-x*ll,
and I<Y, f3(xn*»-<y, z*> I= I<y, f3(xn*)-z*> 1::::;;lIyllllf3(xn*) -z*lI.

Thus lim<y, f3 (xn*)>=O, f3 (x*) > and lim<y, f3 (xn*)>=<y, z*>. ..

11

for all yEA such that yECc(.d(A)). In consequence <Y,f3(x*»=<y, z*> for all such
y and so f3(x*)=z*. By the closed graph theorem this fact implies that f3 is a contin-
uous mapping. .

Assume f3* is the continuous adjoint mapping of A** to A**. We may consider A as.

isometrically embedded in A** in the canonical manner [2J.
Let XEA and choose a sequence {xn}cA such that limllxn-xli=O and {xn}cCc(.1.

(A)). Take znEA such that zn=xn¢. Then for each x*EA* .

Therefore f3* (xn) =Zn·
Since 1i;nllxn-xlI=O and f3* is continuous there exists an element zEA such that

l~zn=I~f3*(xn)=f3(X)=z.

Then it is clear that z=X¢, and so x¢EA, i e., A is an ideal of C(.d(A)). Thus

,u(A)=C(.d(A)).
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