A NOTE ON C*-ALGEBRAS

By Hyo-Chul Kwak

1. Introduction.

Let A be a commutative C^* -algebra with involution+, written $+(x)=x^+$ for all $x \in A$, and let $\Delta(A)$ be the set of all homomorphisms of A onto the field C of complex numbers. Then $\Delta(A)$ is isomorphic to the set $\{\mu^{-1}(0) : \mu \in \Delta(A)\}$ whose element is a regular Maximal ideal in A ([2]). $\Delta(A)$ with the Gelfand topology is called the regular maximal ideal space of A. Let \hat{A} be the set of all Gelfand transforms of A.

Some works on ideals of a C^* -algebra are found in [1] and [4]. The purpose of this paper is to define a sub- C^* -algebra of A (Definition 2.1) and to prove some properties of sub- C^* -algebras (Theorem 2.4 and Proposition 2.3 and 2.5), in particular, that every sub- C^* -algebra of A is an intersection of some regular maximal ideals of A (Theorem 2.6). Furthermore, it will be proved that $\mu(A) = C(\Delta(A))$ under some conditions (Theorem 3.2), where $\mu(A)$ is the normed algebra of all bounded continuous functions ϕ on $\Delta(A)$ with $\phi \hat{A} \subset \hat{A}$, and $C(\Delta(A))$ is the normed algebra of all bounded continuous functions from $\Delta(A)$ to C.

2. Definition and preliminary theorems.

In the sequel, we assume that A is a commutative C^* -algebra with a minimal approximate identity ([3]). Then A is semi-simple, self-adjoint and $A=C_0(\Delta(A))$, where $C_0(\Delta(A))$ is the normal algebra consisting of all bounded continuous complex-valued functions on $\Delta(A)$ vanishing at infinity ([2]). Let $C_c(\Delta(A))$ be the algebra with supremum norm consisting of all bounded continuous complex-valued functions on $\Delta(A)$ with compact supports. Then $C_c(\Delta(A)) \subset \hat{A}$ ([2]). Moreover, if we denote A_0 the derived algebra of A, then $A=A_0(\lceil 2\rceil)$.

DEFINITON 2.1 (Sub-C*-algebra) Let $\mathfrak A$ be an ideal of A. If $\mathfrak A$ satisfies the conditions:

- (i) \mathfrak{A} is closed under involution operation $(a \in \mathfrak{A} \Rightarrow a^+ \in \mathfrak{A})$,
- (ii) $\mathfrak A$ is a Banach algebra under the same norm given to A, then it is called a sub- C^* -algebra of A.

For each $\mu_0 \in \Delta(\mathfrak{A})$, let $m_0 = \mu_0^{-1}(0)$ and define $\mu(x) = \mu_0(ax)/\mu_0(a)$, where $x \in A$ and $a \in \mathfrak{A}$, $a \in m_0$. (Note that \mathfrak{A} is a C^* -algebra).

Then μ is well-defined since $\mathfrak A$ is an ideal of A. $\mu(x)$ is independent of the choice of a, because for $a, b \in m_0$

$$\mu_0(xab) = \mu_0(xa) \cdot \mu_0(b) = \mu_0(bx) \cdot \mu_0(a),$$

and so

$$\mu_0(ax)/\mu_0(a) = \mu_0(bx)/\mu_0(b)$$
.

PROPOSITION 2.2. μ is in $\Delta(A)$.

Received by the editors Nov. 11, 1974.

Proof. For $x, y \in A$ $\mu(x+y) = \mu(x) + \mu(y)$ is obvious.

For
$$a \in m_0$$
, $\mu(xy) = \mu_0(a^2xy)/\mu_0(a^2)$
= $(\mu_0(ax)/\mu_0(a)) \cdot (\mu_0(ay)/\mu_0(a))$
= $\mu(x) \cdot \mu(y)$.

Since $\mu_0: \mathfrak{A} \to C$ is an epimorphism, $\mu: A \to C$ is also an epimorphism. We define

$$H(\mathfrak{A})\!=\!\!\underset{a\in\mathfrak{A}}{\bigcap}\{\mu\!\!\in\!\!\varDelta(A):\mu(a)\!=\!0\}.$$

Then $H(\mathfrak{A})$ is the hull of \mathfrak{A} in A, and $H(\mathfrak{A})$ is a closed subset of $\Delta(A)$ in the weak* and the hull-kernel topologies ([2]). Thus, $\Delta(A) \sim H(\mathfrak{A})$ is an open subset of $\Delta(A)$.

PROPOSITION 2.3. The correspondence $\mu_0 \rightarrow \mu$ defines a bijective mapping from $\Delta(\mathfrak{A})$ to $\Delta(A) \sim H(\mathfrak{A})$.

Proof. That this mapping is continuous in the weak* and in the hull-kurnel topologies ([3]) is clear from the above definition. For $\mu \in H(\mathfrak{A})$ (i.e., there is at least an element $a(\neq 0)$ in \mathfrak{A} such that $\mu(a)\neq 0$) define

$$\mu_0: \mathfrak{A} \rightarrow C$$
 such that $\mu_0(a) = \mu(a)$.

Then, for $x \in A$, $\mu(xa) = \mu(x) \cdot \mu(a) = \mu(x) \cdot \mu_0(a) = \mu_0(ax)$, and so $\mu(x) = \mu_0(xa)/\mu_0(a)$. This implies that our mapping is bijective.

If we define $\Delta^0(\mathfrak{A}) = \Delta(A) \sim H(\mathfrak{A})$, $\Delta^0(\mathfrak{A})$ is homeomorphic to $\Delta(\mathfrak{A})$ in the weak* and in the hull-kernel topologies, and

$$\Delta(A) = \Delta^{\circ}(\mathfrak{A}) \cup H(\mathfrak{A}).$$

Then we can prove that $\Delta^{\circ}(\mathfrak{A})$ is dense in $\Delta(A)$ with the hull-kernel topology ([2]). We summarize the above results as follows

THEOREM 2.4.

$$\Delta(A) = H(\mathfrak{A}) \cup \Delta^{\circ}(\mathfrak{A}),$$

where $H(\mathfrak{A})$ is the hull of \mathfrak{A} in A and $\Delta^{\circ}(\mathfrak{A})$ is an open subset of $\Delta(A)$ which is homeomorphic to $\Delta(\mathfrak{A})$ in the weak* and in the hull-kernel topologies. Moreover, in the hull-kernel topology $\Delta^{\circ}(\mathfrak{A})$ is dense in $\Delta(A)$.

If we put $\mathfrak{A}^{\circ} = \{a^0 : a \in \mathfrak{A}\}$, where $a^0(m_0) = \mu_0(a) = \hat{a}(m) = \mu(a)$ for $\mu_0 \to \mu$, $\mu_0^{-1}(0) = m_0$ and $\mu^{-1}(0) = m$, then we have the following.

PROPOSITION 2.5. If A has a minimal approximate identity, then following holds.

- (i) A is semi-simple and self adjoint,
- (ii) A is regular,
- (iii) The mapping $\hat{a} \rightarrow \hat{a}$ is an isometric isomorphism of \mathfrak{A}° into A in the usual supportant mum norms on \mathfrak{A}° and \hat{A} .

Proof. By the definition $\mathfrak A$ has an involution, i.e., $a \in \mathfrak A$ implies that $a^+ \in \mathfrak A$. For $\mu_0 \to \mu$, $m_0 = \mu_0^{-1}(0)$ and $m = \mu^{-1}(0)$, since $a^0(m_0) = \hat{a}(m)$ and A is self-adjoint,

$$\overline{a^0(m_0)} = \overline{\hat{a}(m)}$$
 and $\hat{a}^+(m) = a^{0+}(m_0)$

which implies that $\mathfrak A$ is self-adjoint. Assume $a^0(\Delta(\mathfrak A))=0$. Then, for $\mu_0 \in \Delta(\mathfrak A)$ and $\mu \in \Delta^o(\mathfrak A)$, where $\mu_0 \to \mu$, we have $\mu_0(a) = \mu(a)$. Of course, for each $\nu \in H(\mathfrak A)$, $\nu(a) = 0$. Thus $\hat{a}(\Delta(A))=0$, and it follows that a=0 (by the semi-simplicity of A). Thus $\mathfrak A$ is semi-simple.

Note that for a locally compact Hausdorff space S, $C_0(S)$ is a regular commutative Banach algebra and $\Delta(C_0(S)) = S([3])$. Since $\Delta(\mathfrak{A})$ is a locally compact Hausdorff space ([2]), $C_0(\Delta(\mathfrak{A}))$ is regular which means that the weak* topology and the hull-kernel topology on $\Delta(C_0(\Delta(\mathfrak{A}))) = \Delta(\mathfrak{A})$ coincides. Therefore \mathfrak{A} is regular.

Finally, for $a \in \mathfrak{A}$

$$\|\mathfrak{A}^0\|_{\infty} = \sup_{m_0 \in \Delta(\mathfrak{A})} |\mathfrak{A}^\circ(m_0)| = \sup_{m \in \Delta^0(\mathfrak{A})} |\hat{a}(m)|$$

$$= \sup_{m \in \Delta(A)} \|\hat{a}(m)\| = \|\hat{a}\|_{\infty}.$$

THEOREM 2.6. If A has a minimal approximate identity, then the Kernel $K(H(\mathfrak{A}))$ of $H(\mathfrak{A})$ is equal to \mathfrak{A} .

Proof. Obviously $\mathfrak{A}\subset K(H(\mathfrak{A}))$. Take $x\in K(H(\mathfrak{A}))$. Then for each $m'\in H(\mathfrak{A})$, $\hat{x}(m')=0$. We shall define $\phi\in C_0(\mathcal{A}(\mathfrak{A}))$ by $\phi(m_0)=\hat{x}(m)$ for $m_0=\mu_0^{-1}(0)$ and $m=\mu(m)$, where

$$\Delta(\mathfrak{A}) \ni \mu_0 \longrightarrow \mu \in \Delta^0(\mathfrak{A}) \subset \Delta(A)$$

Since $a^0 = C_0(\Delta(\mathfrak{A}))$ (Note: \mathfrak{A} is a commutative C^* -algebra) there exists an element b in \mathfrak{A} such that $b^0 = \phi$. Noting $b^0(m_0) = \hat{b}(m)$ we have $\hat{b} = \hat{x}$, and by the semi-simplicity b = x. Thus, $K(H(\mathfrak{A})) \subset \mathfrak{A}$.

EXAMPLE 2.7. Let \mathfrak{M} be a regular maximal ideal of A. Since A is semi-simple and self-adjoint, for $x \in \mathfrak{M}$, $\hat{x}^+(m) = \hat{x}(m) = 0$. Therefore $x^+ \in \mathfrak{M}$ implies that \mathfrak{M} is closed under involution operation. If A has a minimal approximate identity and \mathfrak{M} is complete with the same norm as one of A, then \mathfrak{M} is a sub- C^* -algebra of A, $H(\mathfrak{M}) = \mathfrak{M}$, and $A(\mathfrak{M}) = C_0(A(\mathfrak{M}))$ (\mathfrak{M}) is isometric and isomorphic to $A(A) = \mathfrak{M}$ in the weak* and hull-kernel topologies. In particular, by the previous theorem, every sub- C^* -algebra is an intersection of some regular maximal ideals.

Recall that A^* is the dual space of A and that $\mu(A)$ is the normed algebra of all bounded continuous functions ϕ on $\Delta(A)$ such that $\phi \hat{A} \subset \hat{A}$. We denote by $C(\Delta(A))$ the normed algebra consisting of all bounded continuous complex-valued functions on $\Delta(A)$. Then it is obvious that $\mu(A) \subset C(\Delta(A))$.

3. The main theorem.

We define $\langle x, x^* \rangle = x^*(x)$, where $x \in A$ and $x^* \in A^*$

LEMMA. 3.1. If $x^* \in A^*$ is a continuous linear functional, there exists a unique complex-valued regular Borel measure μ_x^* on $\Delta(A)$ such that

$$\langle xy, x^* \rangle = \int_{A(A)} \hat{x}\hat{y}(m) d\mu_x * (m).$$

Furthermore, if \hat{x} has a compact support, then

$$\langle x, x^* \rangle = \int_{A(A)} \hat{x}(m) d\mu_x * (m).$$

Proof. For $x, y \in A$ $||xy|| \le ||x|| \cdot ||y|| = ||\hat{y}||_{\infty} ||x||$.

Thus
$$|\langle xy, x^* \rangle| \leq ||x^*|| \cdot ||xy|| \leq ||x||^* ||x|| \cdot ||\hat{y}||_{\infty}$$

and hence, for a fixed element $x^* \in A^*$ each $x \in A$ defines a continuous linear functional on \hat{A} whose value at \hat{y} is $\langle xy, x^* \rangle$.

However, since $\hat{A} = C_0(\Delta(A))$ this functional is defined on $C_0(\Delta(A))$.

If we denote by $M(\Delta(A))$ the linear space of all regular complex valued Borel measures on $\Delta(A)$ which have finite total mass [3], then there exists a unique $\mu_x \in M(\Delta(A))$ ([3]) such that

$$\langle xy, x^* \rangle = \int_{A(A)} \hat{y}(m) d\mu_x(m)$$

and $\|\mu_x\| \leq \|x^*\| \|x\|$.

Also for $x, z \in A$ and all $y \in A$, it is clear that

$$\int_{A(A)} \hat{y}\hat{z}(m) d\mu_x(m) = \langle xyz, x^* \rangle = \langle zyx, x^* \rangle$$

$$= \int_{A(A)} \hat{y}\hat{x}(m) d\mu_x(m).$$

By the uniqueness of measures, for each $x, z \in A$ $\hat{x}\mu_z = \hat{z}\mu_x$.

Let $S_x = \{\mathfrak{M} \in \Delta(A) : \hat{x}(\mathfrak{M}) \neq 0\}$ for each $x \in A$.

Then $S_x = \Delta(A) - \{\mathfrak{M}\}$, where $x \in \mathfrak{M}$, and since $\Delta(A)$ is Hausdroff, $\{\mathfrak{M}\}$ is closed in A. Thus S_x is open in $\Delta(A)$, and S_x is a locally compact subspace of $\Delta(A)$. Therefore the following integral is well-defined.

(3.2)
$$\int_{S_x} \phi(m)/\hat{x}(m) d\mu_x(m),$$

where $\psi \in C_c(S_x)$. If K is a compact subset of S_x , we denote all these functions in $C_c(S_x)$ whose support lies in K by $C_c^K(S_x)$. For each compact set K the above (3.2) defines a continuous linear functional in the inductive limit topology on $C_c(S_x)$ ([3]) Hence there exists a unique complex-valued regular Borel measure $\mu_x^x *$ on ([3]) such that

$$\int_{S_x} \phi(m)/\hat{x}(m) \ d\mu_x(m) = \int_{S_x} \phi(m) d\mu_x^* * (m)$$

for $\psi \in C_c(S_x)$. $\{S_x : x \in A\}$ is an open covering of $\Delta(A)$, and $\hat{x}\mu_z = \hat{z}\mu_x(x, z \in A)$ says that $\mu_z^x *= \mu_z^z *$ on $S_x \cap S_z$. Hence there exists a unique complex-valued regular measure $\mu_x *$ on $\Delta(A)$ such that

$$\mu_x * | S_x = \mu_x^x *$$

From the above (3.1)

$$< xx, x^* > = \int_{A(A)} \hat{x}(m) d\mu_x(m) = \int_{S_x} \hat{x}(m) d\mu_x(m),$$

and by (3.2)

(3.3)
$$\int_{S_x} \phi(m) \hat{x}(m) d\mu_x * (m) = \int_{S_x} \phi(m) d\mu_x(m),$$

where $x \in A$ and $\phi \in C_c(S_x)$.

By the definition of S_x it is clear that \hat{x} is the uniform limit of a sequence $\{\phi_n\} \subset C_c$ (S_x) , and thus

$$\langle xx, x^* \rangle = \int_{S_x} \hat{x}(m) d\mu_x(m) = \lim_{n} \int_{S_x} \phi(m) d\mu_x * (m)$$

$$= \lim_{n} \int_{S_x} \phi_n(m) \hat{x}(m) d\mu_x * (m)$$

$$= \int_{S_x} \hat{x}\hat{x}(m) d\mu_x * (m)$$

$$= \int_{d(A)} \hat{x}\hat{x}(m) d\mu_x * (m) .$$

With the above equation and the identity

$$4xy = (x+y)^2 - (x-y)^2$$
 for $x, y \in A$,

we can easily conclude the following:

$$\langle xy, x^* \rangle = \int_{A(A)} \hat{x}\hat{y}(m) d\mu_x * (m)$$
 for $x, y \in A$.

If the support of \hat{x} is compact, then we can find a $y \in A$ such that $\hat{x} = \hat{x}\hat{y}$ ([2]). In this case, by the semi-simplicity of A, x = xy. So

$$< x, x^* > = < xy, x^* > = \int_{A(A)} \hat{x} \hat{y}(m) d\mu_x(m) = \int_{A(A)} \hat{x}(m) d\mu_x(m).$$

The fact that $C_c(A(A)) \subset \hat{A}$ ([2]) and the preceding equation is valid for all $x \in A$ such that \hat{x} has compact support implies that the measure μ_x^* constructed for each $x^* \in A^*$ is unique.

THEOREM 3.2. If the linear span of A^2 is norm dense in A, then $\mu(A) = C(\Delta(A))$.

Proof. We shall prove thisby using the previous lemma. At first we prove that the set of all $z \in A$ such that z has compact support is dense in A. We have already proved that $C_c(\Delta(A)) \subset \hat{A}$.

For $x \in A$ and $\varepsilon > 0$ there exists an element $y \in A$ such that $\hat{y} \in C_{\varepsilon}(\Delta(A))$ and $\|\hat{x} - \hat{y}\| \le \varepsilon / \|x\|$, since $\hat{A} = C_0(\Delta(A))$. Since $\|xy - x^2\| \le \|x\| \|y - x\| = \|x\| \|\hat{x} - \hat{y}\| < \varepsilon$, the support of $\hat{x}\hat{y}$ is compact, $4xy = (x+y)^2 - (x-y)^2$ and A^2 is dense in A. Thus our

assertion is true.

In order to prove our theorem it suffices to verify that \hat{A} is an ideal of $C(\Delta(A))$, since $\mu(A) \subset C(\Delta(A))$. According to this reason we have to prove that for $\psi \in C(\Delta(A))$ and each $x \in A$ $\psi \hat{x} \in \hat{A}$.

For $x^* \in A^*$ and $y \in A$ with $\hat{y} \in C_c(\Delta(A))$ we define

$$\langle y, \beta(x^*) \rangle = \int_{A(A)} \varphi \hat{y}(m) d\mu_x * (m),$$

where μ_x^* is the regular Borel measure constructed in the proof of the preceding lemma. Since $C_c(\Delta(A)) \subset \hat{A}$ and A is self-adjoint, if $U(y) \supset K(y)$ is an open set with compact closure, then there exists a $z \in A$ with $z \in C_c(\Delta(A))$, $\hat{z} \equiv 1$ on U(y) and $\|\hat{z}\|_{\infty} = 1$, where K(y) is the compact support of y. Then

$$\hat{y}=\hat{z}\hat{y}$$
 ($z\equiv 1$ on $K(y)$).

Since $\psi \hat{z}$ has compact support, $\psi \hat{z} = C_{\varepsilon}(\Delta(A))$. Thus there exists

$$z_{\phi} \in A$$
 such that $\hat{z}_{\phi} = \hat{z}\phi$.

By the above lemma and our definition

(3.4)
$$\langle y, \beta(x^*) \rangle = \int_{A(A)} \hat{y} \psi(m) d\mu_x * (m) = \int_{A(A)} \hat{y} \hat{z}_{\psi}(m) d\mu_x * (m) = \langle y z_{\psi}, x^* \rangle = \int_{A(A)} \hat{z}_{\psi}(m) d\mu_y(m).$$

Therefore we have

$$|\langle y, \beta(x^*) \rangle| \leq ||\hat{z}\phi||_{\infty} ||\mu_y|| \leq ||\phi||_{\infty} ||x^*|| ||y||$$

for each $y \in A$ with $\hat{y} \in C_c(\Delta(A))$ ((3.1) in the proof of Lemma 3.1).

Thus, by the definition of $\beta(x^*)$ and the above inequality (3.4) it is clear that $\beta(x^*)$ is a bounded linear functional on $y \in A$ with $\hat{y} \in C_c(A(A))$.

By the remark at the beginning of our proof it follows that $\beta(x^*)$ can be uniquely extended to A without increasing norm. By the lemma 3.1

$$\langle xy, x_1^* \rangle + \langle xy, x_2^* \rangle = \langle xy, x_1^* + x_2^* \rangle$$

$$= \int_{A(A)} \hat{x} \hat{y}(m) d\mu^{x_1} * (m) + \int_{A(A)} \hat{x} \hat{y}(m) d\mu_{x_2} * (m)$$

$$= \int_{A(A)} \hat{x} \hat{y}(m) d(\mu_{x_1^* + \mu_{x_2^*}}) (m)$$

$$= \int_{A(A)} \hat{x} \hat{y}(m) d\mu_{x_1^* + x_2^*} * (m),$$

and thus $\mu_{x_1}*+\mu_{x_2}*=\mu_{x_1}*_{+x_2}*$, where x_1^* , $x_2^*\in A^*$ and $x_1, x_2\in A$. This implies that $\beta:A^*\longrightarrow A^*$ is linear.

Let $\lim_{x} ||x_n^* - x^*|| = 0$ and $\lim_{x} ||\beta(x_n^*) - z^*|| = 0$. Then by the above (3.4) for any $y \in A$ with $\hat{y} \in C_c(\Delta(A))$ we have

$$|\langle y, \beta(x_n^*) \rangle - \langle y, \beta(x^*) \rangle| = |\langle y, \beta(x_n^* - x^*) \rangle|$$

= $|\langle y_{\psi}, x_n^* - x^* \rangle| (y_{\psi} = z_{\psi}y)$

$$\leq ||y_{\phi}|| ||x_{n}^{*}-x^{*}||,$$

and
$$|\langle y, \beta(x_n^*) \rangle - \langle y, z^* \rangle| = |\langle y, \beta(x_n^*) - z^* \rangle| \le ||y|| ||\beta(x_n^*) - z^*||$$
.

Thus
$$\lim_{n} \langle y, \beta(x_n^*) \rangle = \langle y, \beta(x^*) \rangle$$
 and $\lim_{n} \langle y, \beta(x_n^*) \rangle = \langle y, z^* \rangle$

for all $y \in A$ such that $\hat{y} \in C_c(\Delta(A))$. In consequence $\langle y, \beta(x^*) \rangle = \langle y, z^* \rangle$ for all such y and so $\beta(x^*) = z^*$. By the closed graph theorem this fact implies that β is a continuous mapping.

Assume β^* is the continuous adjoint mapping of A^{**} to A^{**} . We may consider A as isometrically embedded in A^{**} in the canonical manner [2].

Let $x \in A$ and choose a sequence $\{x_n\} \subset A$ such that $\lim_{n \to \infty} ||x_n - x|| = 0$ and $\{\hat{x}_n\} \subset C_c(A)$

(A)). Take $z_n \in A$ such that $\hat{z}_n = \hat{x}_n \psi$. Then for each $x^* \in A^*$

$$<\beta^*(x_n), x^*>=< x_n, \beta(x^*)>=< z_n, x^*>$$

Therefore $\beta^*(x_n) = z_n$.

Since $\lim ||x_n - x|| = 0$ and β^* is continuous there exists an element $x \in A$ such that

$$\lim x_n = \lim \beta^*(x_n) = \beta(x) = z.$$

Then it is clear that $z=\hat{x}\psi$, and so $\hat{x}\psi\in A$, i.e., \hat{A} is an ideal of $C(\Delta(A))$. Thus $\mu(A)=C(\Delta(A))$.

References

- [1] M.C. Flanders, Ideal C*-algebras, Doctoral Dissertation, Tulane Univ. (1968).
- [2] H. C. Kwak, A Study of Commutative C*-algebras, Monograph, Jeonbug Nat. Univ. (1974)
- [3] R. Larsen, An introduction to the Theory of Multipliers, Springer-Verlag, Berlin, Heidelberg, New York (1971).
- [4] J. Jazar and D. C. Taylor, Double Centralizers of Pedersen's Ideal of a C*-algebra, Bull. A. M. S. 78(1972), 992-997.

Jeonbug National University