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A NOTE ON C#*-ALGEBRAS

By Hyo-CHurL Kwak
1. Introduction.

Let A be a commutative C*-algebra with involution+, written + (z) =z* for all z€ A4,
and let 4(A) be the set of all homomorphisms of A onto the field C of complex numbers.
Then A4(A) is isomorphic to the set {1 1(0) : p=4(A)} whose element is a regular Max-
imal ideal in A4 ([2]). 4(A) with the Gelfand topology is called the regular maximal
ideal space of A. Let A be the set of all Gelfand transforms of A.

Some works on ideals of a C*-algebra are found in [1] and [4]. The purpose of this
paper is to define a sub-C*~algebra of A (Definition 2.1) and to prove some properties of
sub~C*-algebras (Theorem 2.4 and Proposition 2.3 and 2.5), in particular, that every
sub~C*-algebra of A is an intersection of some regular maximal ideals of A (Theorem
2.6). Furthermore, it will be proved that p(A)=C(4(A)) under some conditions (The-
orem 3.2), where ;(A) is the normed algebra of all bounded continuous functions ¢ on
A(A) with ¢AcA, and C(4(A)) is the normed algebra of all bounded continous func-
tions from 4(A) to C.

2. Definition and preliminary theorems.

In the sequel, we assume that A is a commutative C*-algebra with a minimal appro-
ximate identity ([3]). Then A is semi-simple, self-adjoint and A=Cy(4(A4)), where
Cy(4(4)) is the normal algebra consisting of all bounded continuous complex—valued func-
tions on 4(A) vanishing at infinity ([2]). Let Cc(4(A)) be the algebra with supremum
norm consisting of all bounded continuous complex-valued functions on 4(4) with com-

pact supports. Then Cc(4 (A)<A ([2]). Moreover, if we denote A, the derived algebra
of A, then A=A,(2]).

DEFINITON 2.1 (Sub—C*-algebra) Let ¥ be an ideal of A. If U satisfies the conditions:

(i) ¥A is closed under involution operation (g=U=at=A),

(ii) ¥ is a Banach algebra under the same norm given to A, then it is called a sub-
C*-algebra of A.

For each py=4(H), let me=yy71(0) and define p(2) =polax)/p(a), where z=A and
as¥, a&my. (Note that ¥ is a C*-algebra).

Then g is well-defined since ¥ is an ideal of A. x(x) is independent of the choice of
a, because for a, b& my

to{xab) = po(z2a) - 1y (8) = 2o (b) - (@),

and so to(ax) [ p1o(a) = po (b) / 1o (5)-
PROPOSITION 2.2. g is in A(A).
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Proof. For z,y=A p(x+y)=p(x)+p(y) is obvious.
For a&mo, a(zy) —t(a29) /()
=((az) / o(@)) - (uolay) [ po(a))
=p(z)- u(y).
Since gy : #—C is an epimorphism, p: A—C is also an epimorphism. We define
HE =, By (h=a(4) : 4@ =0},

‘Then H(H) is the hull of % in 4, and H(WA) is a closed subset of 4(4) in the weak*
and the hull-kernel topologies ([2]). Thus, 4(A)~H() is an open subset of 4(A).

PROPOSITION 2.3. The correspondence pg—p defines a bijective mapping from A(N) to
4(A)~H(X).

Proof. That this mapping is continous in the weak* and in the hull-kurnel topologies
([3]) is clear from the above defmition. For & H(H) (i.e., there is at least an element
a(#0) in A such that x(2)+0) define

Ho : A—C such that go(e)=p(a).

Then, for z=A, p(za)=p(z)-p(a)=p(z) p(a)=po(azx), andso p(z)=po(za)/ro(a).
“This implies that our mapping is bijective.

If we define A°(A)=4(A)~H(¥), 4°(A) is homeomorphic to 4(H) in the weak* and
in the hull-kernel topologies, and ‘

A(A) =4 (A) UHN).

Then we can prove that 4°(¥) is dense in 4(A) with the hull-kernel topology ([2]).
We summarize the above results as follows

THEOREM 2.4.
A4(4)=H(¥A) Y 4° (),

where H(X) is the hull of X in A and A°(H) is an open subset of A(A) which is home-
omorphic to A(X) in the weak* and in the hullkernel topologies. Moreover, in the hull-
kernel topology A° () is dense in A(A).

I we put A°=1{a": as=U}, where a®(mg)=po(a) =d(m)=p(a) for po—p, p " (0)=m
and £71(0)=m, then we have the following.

PROPOSITION 2.5. If A has a mimimal approximate identity, then following holds.

(i) A is semi—simple and self adjoint,

(i) A is regular,

(iii) The mapping d—é is an isometric isomorphism of N° into A in the wusual supre-
mum norms on A° and A.



A note on C*-algebras 7

Proof. By the definition % has an involution, i.e., a=% implies that a*<=¥. For py—
£, my=py"1(0) and m=p"1(0), since a’(m¢)=a(m) and A is self-adjoint,

a"(my) =a(m) and &*(m)=a""(m,)

which implies that % is sef-adjoint. Assume a®(4())=0. Then, for g,=4(Y) and p=
4°(A), where py—p, we have yy(a)=pu(a). Of course, for each veH((N), v(a)=0. Thus
a(4(A))=0, and it follows that a=0 (by the semi-simplicity of A). Thus % is semi-
simple.

Note that for a locally compact Hausdorff space S, Cy(S) is a regular commutative
Banach algebra and 4(Cy(8))=8([31). Since 4(A) is a locally compact Hausdorff space
([20), Co(4()) is regular which means that the weak* topology and the hull-kernel
topology on A(Co(4(U)))=4(¥) coincides. Therefore A is regular.

Finally, for a=¥%

lfﬂollot’:mosé?d(gl) |2[°(m0)]=m2120@1) lé(m)[
s N O]
THEOREM 2.6. If A has a minimal approximate identity, then the Kernel K(H())
of HQD in 4(A) is equal to Y.

Proof. Obviously ¥ K (H(¥)). Take z=K(H (A)). Then for each m’'=H(), (m")
=(. We shall define $=C;(4(A)) by ¢ (mo) =2£(m) for my=yt"2(0) and m=p(m), where

A4 > p—>p= L (A <4(4),

Since a®=Cy(4(A)) (Note: U is a commutative C*-algebra) there exists an element & in
9 such that 8°=¢. Noting 8°(m,) =b(m) we have =2, and by the semi-simplicity b=z.
Thus, K(H ))<=

EXAMPLE 2.7. Let M be a regular maximal ideal of A. Since A is semi-simple and
self-adjoint, for z=M, 2*(m)=2(m)=0. Therefore =M implies that M is closed
under involution operation. If A has a minimal approximate identity and M is complete
with the same norm as one of 4, then M is a sub-C*-algebra of 4, H(IM)=MW, and
A =Co(4(M)) (=M) is isometric and isomorphic to 4(A)~{M} in the weak* and
hull-kernel topologies. In particular, by the previous theorem, every sub-C*-algebra is an
intersection of some regular maximal ideals.

Recall that A* is the dual space of A and that u(A4) is the normed algebra of all
bounded continuous functions ¢ on 4(A4) such that AcA. We denote by C(4(A))
the normed algebra consisting of all bounded continuous complex-valued functions on
A(A). Then it is obvious that u(A)<C(4(4)).

3. The main theorem.
We define <z, 2*>=z*(z), where z=4 and z¥=A*
LEMMA. 3.1. If x*<A* is a continuous linear functional, there exists a unique

complex—valued regular Borel measure p.* on A(A) such that
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<ay,a*>=[ 5m)ducrm).

Furthermore, if £ has a compact support, then

<z, 2*>=[, _smdurim).

Proof. For z,y= A |lzyl<izll-llyl=lll=ll.
Thus | <zy, 2> | <lz*]| - ezl *]| =]l - 3] .o
and hence, for a fixed element z*=A* each z= A defines a continuous linear functional
on A whose value at 5 is <zy, z*>.
However, since A=Cy(4(A4)) this functional is defined on Co(4(4)).
If we denote by M(4(A)) the linear space of all regular complex valued Borel mea~-

sures on 4(A) which have finite total mass [3], then there exists a unique g, =M(4
(4)) ([3]) such that

(3.1 <ay,a*>={  5mdp.(m)

and | M<l|=*]lizll.
Also for z,z=A and all y= A, it is clear that

[ o3I dsa m) =<z, 2%>=<ayz, %>

[ ., e ().

By the uniqueness of measures, for each z,z€A4 #p,=%u..

Let S,=[M=4(4) : 2(M)+0} for each z=A.

Then S,=4(A)—{M}, where 2=M, and since 4(A4) is Hausdroff, {M} is closed in A.
Thus S, is open in 4(A4), and S, is a locally compact subspace of 4(A). Therefore the
following integral is well-defined.

3.2) [, o 12m)dpem),

where ¢=C.(S,;). If K is a compact subset of S;, we denote all these functions in C.
(S.) whose support lies in K by CX(S;). For each compact set K the above (3.2)
defines a continuous linear functional in the inductive limit topology on C.(S.) ([3])
Hence there exists a unique complex-valued regular Borel measure g% on ([3]) such
that

[, 80m) 120m) dpeemy=s.0(mdpzn(m)

for $=C.(S,). {S;: z=A} is an open covering of 4(A4), and Zp,=2u,(z, z=A) says
that pix=pix on S;S,. Hence there exists a unique complex-valued regular measure
% on 4(A) such that

p2%| Se=yii%.
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From the above (3.1)

<zz,2>=(,  tmdum)=[_ sm)du.om),

and by (3.2)

(3.9 [ pmemdnsm=[_ smdp.m,

where z= A and ¢=C.(S,).

By the definition of S, it is clear that £ is the uniform limit of a sequence {¢.}=C.
(S,), and thus

<aw, a*>=| 2m)dpem)=Tim|_g(m)dp,3(m)
- =lim{_ g.(m)2(m)dprs(m)
— [, #2(m) dpcx(m)

=I P (m)d .+ (m).
With the above equation and the identity

dzy=(z+y)°*—(z—y)% for z,yEA,

we can easily conclude the following:

<aya>=[,  9mdpr@m)  for z,y=A.

If the support of £ is compact, then we can find a y=A such that =29 ([2]). In
this case, by the semi-simplicity of A, z=xzy. So

_ N o o "
<a,a*>=<ay2*>=[ i5mdum)={  2(m)dun(m).
< The fact that C.(4(4))—A ([2]) and the preceding equation is valid for all z=A
such that # has compact support implies that the measure g% constructed for each
¥ A* is unique.

THEOREM 3.2. If the linear span of A2 is norm dense in A, then
#(A)=C(4(4)).

Proof. We shall prove thishy using the previous lemma. At first we prove that the set
of all z=A such that = has compact support is dense in A. We have already proved that
C.(4(A)<=A.

For z= A4 and e>9 there exists an element y=A such that $=C.(4(4)) and |z—
J<e/llzll, since A=Co(4(A)). Since zy—22[<|lzlllly—zl=lzlllz—5l<e, the
support of £¥ is compact, 4zy=(z+y)>—(z—y)? and A% is dense in A. Thus our
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assertion is true.

In order to prove our theorem it suffices to verify that A is an ideal of C(4(4)), since
1(A)cC(4(A)). According to this reason we have to prove that for ¢=C(4(4)) and
each z=A4 Ji<=A.

For z*=A* and y= A with $=C.(4(4)) we define

<3 BN >= [, $9m)dur(m),

where p.* is the regular Borel measure constructed in the proof of the preceding lemma.
Since C.(4(A))<A and A is self-adjoint, if U(y)DK(y) is an open set with compact
closure, then there exists a z=A4 with 2=C,(4(4)), 2=1 on U(y) and }|£||l.=1, where
K(y) is the compact support of y. Then

=23 (=1 on K(y)).
Since ¢% has compact support, ¢2=C.(4(A4)). Thus there exists
Z¢EA such that 2¢=%.
By the above lemma and our definition
(3.9 < 8@ >=[, spmdprim = 55sm)dusm)
=gz 2>, 24m)dpym).

Therefore we have
[ <3, B(z*) > | <2l ll e, | <Ml 2* [l ] 31}
for each y= A with $=C.(4(4)) ((3.1) in the proof of Lemma 3.1).
Thus, by the definition of B(2*) and the above inequality (8.4) it is clear that
B(x*) is a bounded linear functional on y=A with $=C.(4(A4)).
By the remark at the begining of our proof it follows that 8(z*) can be uniquely ex-
tended to A without increasing norm. By the lemma 3.1

Lzy, 2>+ lzy, B o=<zy, 2F 2>

=I s (m)d =+ (m) +_[ dwiﬁ(m) Az, (m)
=J- A(A)ij‘, (m)d(pe,*+ 112,+) (m)

=) . A)fﬁ(m)d/z:.*+zz*(m),

and thus g+ frv=piz)%,2%, where z;*, £.*SA* and =z, z,=A. This implies that
B : A*—>A* is linear. :
Let liinllx,.*-—x*H=O and lim|8(z,*)—2*=0. Then by the above (3.4) for any

ye A with $=C.(4(A)) we have

| <y, 8(zs*) >—<y, B(z®)>| =<y, B(z.*—2*) >]
=|<9p z*—2>| (yg=24y)
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Sllyglliz*—2*,
and | <y, B(z,5)>— <y, 7> =] <y Blar?) 2> | <llIBz®) .
Thus lim<y, (2.9 >=<y, f(a*)> and lim<y, f(z;*)>=<y,

for all y= A such that $=C.(4(4)). In consequence <y, B(z*) >=<y, z¥> for all such.
y and so B(z*)==z*. By the closed graph theorem this fact implies that 8 is a contin-
uous mapping. ’

Assume S* is the continuous adjoint mapping of A** to A**. We may consider A as
isometrically embedded in A** in the canonical manner [2].

Let z=A and choose a sequence {z,} <A such that li.mllx,,—.z:lizo and {#,} =C.(4

(4)). Take z,= A such that 2,=%,0). Then for each z*=A4*
<B*(zn), 2*>=<2n, B(2*) >=<2n, 2*>.
Therefore §*(z,)==2,.
Since lifnﬂxn—x]]=0 and B* is continuous there exists an element z=A such that
l,ilmz,,=1§mﬂ* (z.)=B(z)==.
Then it is clear that =3¢, and so fp=A4, ie., A is an ideal of C(4(4)). Thus
2(A)=C(4(4)).
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