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1. Introduction

Until the beginning of this century matroid theory was little more than a patch work of
isolated results. The discipline is still very young if it has now attained the status of a distinctive
discipline, A few results can be traced back half a century, but a majority of theorems were
discovered during the last ten or fifteen years, and many during the last five. The current rate of
progress is exceptionally rapid and the subject is still in a state of flux.

It has also been proved recently that a transversal matroid is binary if and only if it is
graphic. Related to this is the main theorem treated here that the circuit matroid M(G) of a graph
G is transversal if and only if G contains no subgraph homeomorphic to Ky or C; for some .

Onr graph-theoretic terminology is standard and is based essentially on ihe took of Earary(i).
For the matroid and transversal theory we refer to the book of Wilson (2).

Throughout this note E will denote a finite set, and |X| denotes the cardinality of the set X,
I will denote a finite index set, (A;:7i<I) denotes a family of sets indexed Sy I, and (4:: fe=ij
is the set consisting of the distinct merchers of the family (AisiED. U A s vue end z an
elemen* we often write A+z Ito denote AU {z}. .

If A is a subseis of I we write A for E—4,

Z. Basic Cencepts

DEFINITION 2.1 A mairoid M= (E, B) coosists of a nonempty finite set B, together with a
non-empty family B uf subsets of E (called bases) satisfyting tie following properties:

(i) No base properly contains another base.

(i) ¥ 81 nnd By are bases, and z is an clement of By, then there existe ar clement y of T

such the: By—z—+v is aleo a base. )

Ve rru gabuy ssduse ficm these two groperiies thui any iwo Uases of o matrcid conidn ite
5al.€ pwisber of clemeats. The common cacdinality of the bases is the rank r(47) of the matroid
M. Let B() derote the collection of bases of matroid M. ]

If 4 is matroid on a 3¢t F, we sa- that a svheet A of E ic an independen: 22 of ¢ 5 A
is contained 1 some base of M It fllows that the bases of 7 are pgreiiely the iaa sl
fndprode st e, Y L wuy su'ro. of 7, il cauizal independent subsets of X have the unique
car_tnadity, called the renk of X, and deacted by ().

4Ly subsel which is not mdependent is called dependent, and the minimal dependen: sets ave



called the circuits of M : we denote the collection of circuits of M by €(M). Two matroids M,

on Ey and M; on E; are isomorphic if there is a bijection f : E1—E; which preserves independence.

DEFINITION 2.2 If M is a matroid on E, we define the dual matroid M* to be the matroid
on E whose bases are precisely the complements of the bases of M; in other words B* is a base
of M* if and only if E—B* is a base of M.

It is not difficult to check that this does in fact define a matroid. It follows immediately from
this definition that every matroid has a dual, and that this dual is unique. Moreover, it is clear
that the double-dual M** is equal to M, Let us define some ‘co-notation’. If M* is the dual of M,
we define some ‘co-notation’. If M* is the dual of M, we define a cocircuit of M to be a circuit
of M*, Similarly we define a cobase of M to be a base of M* and so on. The reason for

introducing these extra definitions is that we need now deal only with the matroid M, instead of
dealing with both M and M*.
We frequently make use of the following matroid theorems. (7) (9)

LEMMA 2.1 A cocircuit C¥ of a matroid M on a set E is precisely a minimal non-empty

subset of E having a non-empty intersection with every base of M.

LEMMA 2.2 Let M be a matroid on a set E. If Ci, C. are two circuits of M with
2= CiNCe y & Co~Cy, there exists a circuit Cs such that y = C3 S (CiUC) —x.

LEMMA 2.3 If B is any base of M and B=|z1,---za}, there is a unique circuit (of
containing only x; and some elements of B.
We may interprete Lemma 2.3 as follows: let B be a base and z=B, then B+z contains

a unique circuit of M (which we denote by Cs). Hence we have the following definition. (6)

DEFINITION 2.3 Let B be a base, and let zi, -+, Zn be the elements of B, then B+, -
B+zn contain unique circuits Cgy **7 .C,., respectively. These are called the fundamental set of
circuits associated with B, and shall sometimes be called simply Ci, -+, Cm. Each circuit C; is called

the fundamental circuit of zi in B.
By duality any base B of M also determines al fundamental set of cocircuits, namely, the

fundamental circuits of M* determined by the base E—B of M*.

DEFINITION 2.4 The reduction matroid Mx A is the matroid on. A whose circuits are
precisely those circuits of M which are contained in A; similarly, the contraction matroid M-A

is the matroid on A whose cocircuits are precisely those cocircuits of M which are contained in A.

Reduction and contractions are related by the identity (Mx A)*=M*.A We have a special



case of contraction, when A=E—y. (8)

DEFINITION 2.5 For some element = of M, let {z,y} be a cocircuit of a matroid M on a
set E, then M. (E—y) is called the series contraction of M at y

wherever B(M-E—y)={B—y|ycS B& 3(M)}.

DEFINITION 2.6 We can define a matroid on the set of edges of a graph G by taking as
bases of the matroid the edges of the various spanning forests of G. This matroid is called the
circuit matroid of G, and denoted by M(G).

It follows that a set of edges of G is independent if and only if it contains no circuit of G,
and that the circuits of the matroid M(G) are precisely the circuits of G.

The graphical significance of the matroid operations of reduction and contraction can be
explained as follows. If G is a graph, and A is a subset of E(G), define Gx A to be the graph
obtained from G by deleting all edges not in 4, and G+A to be the graph obtained by contracting
all edges not in. A. (2) Two graphs are homeomorhpic if each can be obtained from the same

graph by a sequence of edge subdivisions.

DEFINITION 2.7 Let By and B; be two bases of a matroid M. An exchange ordering of
B; and B: is a bijective mapping ¢ ;: Bi—B; such that, for all z&B;, both Bi—z+0(z) and
By;—0(z) +x are bases of M. A matroid M is base-orderable if there is an exchange ordering for

every pair of bases of M. (5]

DEFINITION 2.8 Let M;, M. be matroids on disjoint sets Ei, E; respectively, the sum

Mi+M; of M; and M, is the matroid on E;\UE; with bases
BUM+M)=(BiUB: | Bi= B(My), B:= B(My)).

3. Transversal Matroids

DEFINITION 3.1 Let A =(4y,+, As) be a family of subsets of a finite set E. A subset
X={x1, -+, zs} of distinct elements of E is -a partial transversal of A is there exists a subfamily

(Aiyy +++, Ai) of such that x,-EA;,- (1=j=k). (z; is said to represent A;; in X)

The maximal partial transversals are then the bases of a matroid on E. When these maximal
partial transversals have cardinality » we call them transversals of A. The basis result linking
transversal theory and matroids is the following:

If A=(Ay, +, An) is a family of subsets of a finite set E, the set of partial transversals of
U is the collection of independent sets of a matroid on E.
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DEFINITION 3.2 A matroid M on E is called a zransversal matroid it there exists some
family ¥ of subsets of E such that B(M) is the family of maximal partial transversals of '2(.
When M is a transversal matroid such that the independent sets of M are the partial

transversals of a family of A= (4, An), we call (&, -, 4n) a transversal presentation or

presentation of M, and write M=M (A, -, 4n).

For the proof of the main theorem we require several lemmas. (3)(4)

LEMMA 3.1 Let M be the transversal matroid M(A,, -, A;) of rank r and let D be a
transversal of (Az, -, A,) such that X=DN\ A1 has minimum cardinality.
Then M= M(A1—X, Az, -+, Ay).

Proof. Let B= {by, b3, -, b,} be a transversal of (4;,+:+, 4,;). Lemma 3.1 is proved if we

show that B is a transversal of (4i~X, 43, -, Ar). Let D= {ds, ---,d,) where icA; @=i<r).
(1)1 Suppose bheA1— X, it is obviously true.
(2)1 Suppose 5£A1—X, then heX=DN AL

Hence'bleD. We may without loss of generality put s1=d5.
1)z ¥ 241~ X then by=d2E Az and B= {bs, b1, b3, -+, bs} is a transversal of (Ai1—~X, A, -,

4A,).

@2 I bog A1~ X, then 52D or b AUD
SupposeAbzéAx Np, tﬁen D= {b3,ds, -, de} is a transversal of (Az, -+, As). Since b2t4y,

dz=‘5\‘1€A1,
‘ 1D N4 <|DNA

which is a contradiction. Therefore b2&D. Also b:7d, since dz=&17b2.

Hence let b2=ds, say.

Now consider bs.
(13 If bac=A1—X, then B= {b3, by, b2, b4y, by} is a transversal of (41—X, Az -, 4)).
(2)a If bsggA1—X, then bs&=D or bst Ai1UD.
Suppose bszA1UD, then D'’ = {b3, b3, d4,++,d;} is a transversal of (Ag, -, 4,) if dscSA:

then |D’'NA1]<<|DNA:1]. This is a contradiction. If ds4, then bo=dsc A1 and b.=h<4,

“and 50 | D" NA4I<|DNA.

This is a contradiction. Hence bs=d,&D.
Carrying on this way see that éither

B= {b;, by, bay +++y i<ty bix1, *++, by}
is a transversal of (A1'~X,' Aiy-, A;)  for some i or we get the contradiction that bi=d;,,
for 1=i=r. This complets the proof. '
— 36 —



LEMMA 3.2 If M is a transversal matroid of rank r, with presentation M=M (4, -, A,),
then there exist distinct cocircuits C® (1ZiZir, such that for some distinct iy, 12, -+, ir

CAZAi; (1=j=r), and M=M(C\%,---,C/*).

Proof. Let D be a transversal of (A, -+, A,; such that X=D" A; has minimum cardinality.
Then (Ai—X)1D=¢
and hence for any y=4,—X, D+yis a base of M, Let B= ‘b, ---, b, be a base of M. Put
D’ = {b2,+++,b,}. Then D’ is a transversal of (A -+, 4,). Hence D'~ A: = DN A;|. Therefore
BN (A—X)#£¢,

This means that A;—X is minimal set intersecting every base of M, and so A;—X is a
cocirenit of M. Applying this precedure to A; (1={=r) and noticing that for any matroid
M=M(Ay, -, Ar), i Ai=A;, then ihere exists A/CAi, A/ FA; such that M=M(4,, -, 4/,

A, -y As), shows that the cocircuit prese:tation must be distinct.

LEMMA 3.3 The craunsversal watroids M(Ay, +, Ar) =M (A1 42, -, Ar)

if and oudy if X i comained in gvery tosniversis of (Aa-dhuy Ly Ly o, b A1)s

Proof. We ace e groof by lodvetion on (XL

Suppose X=1z}. Let z be ccontained in every tvansversal of (de—Ay, -, 4y -4
Then z is a cocircuit of M(A2—dy, -+, Ar—A1). Hence every transversal of (&o, 547 ineriecs
Ay-+z. Chouse a wansversal, B say, of (ds, -, 4,) such that |Bi}(Ay-+=z)| is 4 ramimurm,

(1) If zeBy, then Ty Lemuma 51

M(Ai+z, Agyerey &) =M{((A1+2) — (BiNA1+2), Az ey 4s)
=M(A1—E1, Aj, -, 4r)
Thus  M(Ai+z, Az -, A)=M(A4y, - 4r),

(2) Sugpose ze£Hy. Since z belongs io cvery transversal of (La--Ai, -, Ao A1), 73 clear
thet F=581—(A4i+2) is a partial transversai of (Ax— A, -+, A,— A1),

By the choie of B, it is easy to see that B’ is an miximal partial wavsveeel of 24— &y - oul, E1).
Hince 2 i indepevdent fn MV =MLy v A) cud we aer anmﬁﬂt_.Bf to a base B of M.
ety

1Bz (Ait) [=]8:N (A+2) ]
Now apply (i) tc Ba.

Converzely suppuse M {41+, - -, A7) =B(dy, <+, Ar). Consider transversal D of (Aa—A,,
A,~A4). D is a partial traneversal of (s, .-, 4,) and heace D+=x is a partiel transversal of
(A, +a, Ay oeey A.), Since M(di+z, 000, A) =M(Ay,++, 4;), D+z is a partial trapsversal of
hiy ooy o). But (D4 ) di=¢ and 20 Dz is a partial trangversal of {Aa— Ay ooy A — AL
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Since D is a transversal, D=D+z, that is z&D. Hence z is contained in every transversal of
(42— Ay, -+, A—Ay).
Next, when X= {z, y} - we shall complete Lemma 3. 3.
If M=M(4;,---, &) =M(A1+z, Ay -, 4,) =M(Ar+y, Az -y 45,
then M=M(A1+zx+y, Az -+, A;). Hence it is obvious.

LEMMA 3.4 Let M be a transversal matroid.

Then any reduction MxX A of M is also transversal.

Proof. Let ¥ ==(A4,,--,A;) be a presentation of M. Put Aa=(AiN A4, -, AN A). Then %,

is a presentation of Mx A,

THEOREM 8.1 Let M be a transversal matroid on E, and let = and y be a cocircuit of
M. Then M-(E—y), the series contraction of M at y, is also transversal.

Proof. Let r(M)=r. By Lemma 3.2, M has as-a presentation some family &* of its
cocircuits; There are r cocircuits in €* and all are distinct. Such a presentation, although not
necessarily unique, is minimal.

Let €*=(Ci*,..-,C/*), and put A=E—{(z,3}.

Then, by Lemma 3.4, G *=(Ci*NA,-,C*NA) is a presentation of Mx A, Now, since (z,y} _
is a cocircuit of M, Mx A has rank r—1, and so some r—1 of the sets in ©4* give a presentation
of MxA. So we may assume that €4* =(C:*N4, -, C,*NA) is a. presentation of Mx A. Since
every transversal of €4* contains all of Ci* A, and since some transversal of (Cq*,---,C,*) does

not interesect Ci* at all, it follows that C;"“: can contain at most two elements.

Suppose C1* contains just one clement z. then, since {2} is a cocircuit of M, =z is neither =
nor ¥ Now every transversal of &,* contains Ci*NA={z}, and so 2z is contained in some
cocircuit C;* other than Ci*. But this is impossible since the members of €% are distinct cocircuits.
Hence C1* has exeuctly two elements.

Let Ci*= {w,2). We show that Ci*= (0,2} = (z, 9} .

Suppose first that (o, z-} N {z,y} =¢. Let

U=E—{w,2}, p=E-—{z,y,0,z.
Then since r(Mx A)=r—1, and since both {wf and {2z} are cocurcuits of Mx A, r(Mxp)=r—3.
But, since Cy*= {w, 2z} is a cocircuit of M, r(Mx U)=r—1. Hence both {z} and {y} are cocircuits
of Mx U, In other words = and y are in every transversal of (Cz';Ci‘, ey C*¥—C1®)
and so, by Lemma 3. 3 (Ci*U {z, 3}, C2*, -+, C,*) is a presentation of M. Now since r(Mx p)=r—3
every transversal of (Ca¥,---,C,*) intersécts C1*lJ {z,y) in at least two elements. But there is

some transversal of €4* which intersects this set in {w,z}. Therefofe,hy Lemma 3.1, ({z,%},
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Cy*, -+, C/*) is a presentation of M,
I (@2} N{z,5) = (2}, say,
then y is in every transversal of (C*—Ci*,:.,C,¥—C\¥).. Hence (Ci*+y, . .Co*,--,C/*) is a
presentation of M. Now every transversal of (Co¥, -+, C,*) intersects C1*-+y. But, as above, there is a
transversal which does not contain z or y. Therefore ({z,3, Ci*,---,C/*) is a presentation of M.
We may therefore now assurme that Ci*= [z, y}.
For 2=i=r, write
Di*= {Ci* If C*N {z,5) =¢
(C*NA) += otherwise
We shall show that D*=(D,*, ., D,*) is a presentation of M. (E—y)

Let B be a base of M, with y in B, Then B is a transversal of €*. If y represents Ci*,
clearly. B—y is a transversal of (Cz*,--,C*) and hence of (D:*,:++,D,*). If x represents C* in
B, y must represent some other set C;* in B. Then z&D;*, and so B—y is a transversal of
(D2*, -, D*). Hence in either case, B—y is a base of a matroid M(Ds*,+, D,*) on E—y.

Conversely, suppose B* is a base of a matroid M(D;*,+:,D;*) on E—~y Then B* is a
transversal of (Dg*,«+, D/*), If x&£B*, B* is a transversal of (Cz*,+-,C*;) and so B*+yis a
transversal of (Ci*,:--,C,*), If 2=B¥*, suppose x represents D* in B¥, Then either x&Cj* or
y=C*, If x=C;*, B* is a transversal of (Cz*,++,C,¥) and so B*+y is a transversal of (C*, -
C/*) If y=C;*, B¥*—z+y is a transversal and again B*+y is a transversal of (Cy*,:-,C/*).
Hence it is always the case B*+y is a base of M. It follows that M:(E—y) is a matroid
on E—y,

4. Main theorem

The main theorem c-aracterizes those graphs whose circuit matroids are transversal. We begain

with several lemmas.

LEMMA 4.1 Let M(Ky) be a circuit ’matroid of a complete graph Ki. Then M(K,) is not

transversal.

Proof. It is easy to show that M(K,) is not base-orderable. Since every transversal matrodi
is base-orderable, M(K,) is not transversal. (5)

LEMMA 4.2 Let C} is the graph obtained from t_he circuit of length k on replacement of
each edge by a pair of parallel edges. Let M(C}) be @ circuit nia?roid of Ci. Then M(C})

is not transversal for k>2.

Proof. Suppose the lemma is false, and let (Ci* +-,C*.1) be a cocircuit presentation of
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M(C3?). Label the edges of Ci? with the set {1, 1, 2, 2',-.-,%, ¥} so that parallel edges are
assigned labels with the same number. Then each cocircuit of M(Cs?), and hence each C*, is of
the form {m,m',n,n'}). Since 2>2, there is some j, 1=j=k, such that (j, '} is contained in at
least two of the cocircuits C*. But then {j,7'} a circuit in Ci?, is a partial transversal of (Ci*, --+

C*;_1), and we have a contradiction.

LEMMA 4.3 Let My, M; be transversal matroids on disjoint sets Ei, E2 respectively. Then
the sum Mi+M, of M, and M: is transversal.

Proof. Let (Ai, -+, Am) be a presentation of My, and let (By, -+, Bs) be a presentation of Ma.
Then (A, -, Am, B1, -+, Bs) is a presentation of Mi+M.. (4)

LEMMA 4.4 Let G be a black of order greater than two, with no subgraph homeomorphic
to Ky or C} ((>2). Then G contains a vertex adjacent to exactly two vertices, and joined by

just one edge to one of these vertices.

Proof. The proof is by induction on the order of G. The lemma cle;arly holds if G has order
three. Suppose now that the order of G is N_>3. There is sdme vertex « in G adjacent to exactly
two vertices, » and w. Let us assume that # is joined to v by edges e, --;, &ms and to w by edges
S1, 00 fno 1f either m or n is one, % is the. required vertex. Otherwise both m and 2 are at
least two.

1, (v, w)£E(G). Let C=G-(E(G)—{f1,*+,fx}). Then & is a block of order N—1
and contains no subgraph homeomorphic to K; or Ci? (4>>2) since G does not. Hence, by the
induction hypothesis, there is a vertex z(##) in G’ adjacent to exactly two vertices of G', and
joined by just one edge to one of these vertices. The vertex x has same property in G,

(@) (v,w)cE(G). Since G contains no homeomorph of Cs? there is only one edge g joining
v and w, and moerover, if H denotes the graph obtained by deleting the vertex # its incident
edges e, +yemy f1y°0%5 fro and the edge g. If H is connected, then G contains a subgraph
homtseomorphic to Cs2. Hence H must be disconnected, with v and w in different components.

Therefore v and w are cut-vertices of G. This is a contradiction since G is a block.

THEOREM 4.1 Let G be a finite graph. Then M(G), the circuit matroid of G, is

transversal if and only if G contains no subgraph homeomorphic to Ky or Ci¢ (£>2).

Proof. Suppose there exists a subgraph H of G which is homeomorphic to Ks. Then H can
be obtained from G by deleting all the edges not in E(H). Hence, by Lemma 3.4, M(H) is
transversal. If H is a complete graph on four vertices, then M (H)=M(K,) is transversal. This is
impossible by Lemma 4.1. If H is the graph obtained from K, by inserting a new vertex into an



edge of Ky, then Kj is obtained from H by contracting one of new edges. Hence, by theorem
3.1 M(K,) is transversal, It is impossible by Lemma 4.‘1. Therefore G contains no subgraph
homeomorphic to Ks It can be shown by the same method that G contains no subgraph
homeomorphic to C,2 '

Conversely, suppose G contains no subgraph homeomorphic to Ky or Ci2 (£>2). Since the
circuit matroid of a graph is the sum of the circuit matroids of its blocks, it follows from Lemma
4.3 that we can assume that G is a block. We shall prove, by induction on the order of G, that
M(G) is transversal. This is trivially graphs of orders one and two. Suppose it is true for graphs
of order less than N, and let G have order N>>2. By Lemma 4.4, there is a vertex # in G such
that » is adjacent to exactly two vertices » and w, and is joined to v by one edge e and to w
by edges f1,+, fn

Let G' +e=GX (E(G)— {f1, s fn}).

Then G’ is a block of order N—1 and G’ contains no subgraph homeomorphic to Ky or Ci? (£>>2)
since &G does not. Hence M(G') is transversal. Let M(G’) have the presentation (As,---, 4,)
Put Ar1= e, f1,+++ fn}. Then, since A,y is a cocircuit of M(G),

M(G)=M(Ai, Az, +; Ar, Ari)

Hence M(G) is a wansversal matroid.
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