Rational Extentions of Modules and D Rings

bv

Jung Wan Nam and Kang-Joo Min

Gyeong Sang National University, JinJu, Korea.

§ 1. Introduction.

This paper is concerned with the study of modules whose lattice of submodules is distributive and, in particular, the study of rings R such that R^R is a D module. In § 2 we consider the basic properties of D modules and D rings. In § 3 we consider the rational extensions of modules over a left D ring and we obtain the following result. If R is a left D ring, then every left R-module is rationally complete.

§ 2. D rings and D modules.

Throughout this paper, R will denote an associative ring with identity 1 and each module M will be a unitary left R-module. L(M) will denote the lattice of submodules of M and E(M) denote the injective hull of M.

DEFINTION 2.1. (a) M is said to be a D module if L(M) is a distributive lattice. That is,

- 1) for all A, B, C \in L(M), A \cap (B+C) = (A \cap B) + (A \cap C) or equivalently
- 1)' for all A, B, $C \in L(M)$ $A + (B \cap C) = (A+B) \cap (A+C)$.
 - b) R is said to be a left (right) D ring if $\mathbb{R}^R(R\mathbb{R})$ is a D module.

PROPOSTITION 2.2. Suppose that M is a D module if and only if $Hom_R(A/A \cap B, B/A \cap B) = 0$ for all A, B\in L(M).

Proof. A lattice is distributive if and only if relative complements are unique [3]. If $A \cap B = 0$, then there is a bijection between Hom_R (A, B) and the set of complements of B in A+B. Thus working modulo $A \cap B$, the complements of B in A+B relative to $A \cap B$ are in one to one correspondence with $Hom(A/A \cap B, B/A \cap B)$. The result follows.

PROPOSTION 2. 3. Every idempotent of a left Dring is central.

Proof. If R is a left D ring and $e \in \mathbb{R}$ is an idempotent, then $R = \operatorname{Re} \oplus (1-e)$ and $\operatorname{eR}(1-e) = \operatorname{Hom}((\operatorname{Re}, R(1-e)) = 0$. Similarly $(1-e)\operatorname{Re} = 0$ and so e is central.

PROPOSTITION 2.4. M is a D module if and only if for every module P and $f \in \text{Hom}(P, M)$, $f^{-1}(A+B) = f^{-1}(A) + f^{-1}(B)$ for all A, $B \in L(M)$.

Proof. Let C be any submodule of M and $f: C \to M$ be the inclusion map. Then $(A+B) \cap C = f^{-1}(A+B) = f^{-1}(A) + f^{-1}(B) = A \cap C + B \cap C$. (⇔) $f^{-1}(A) + f^{-1}(B) = f^{-1}ff^{-1}(A) + f^{-1}ff^{-1}(B) = f^{-1}(ff^{-1}(A) + ff^{-1}(B)) = f^{-1}(A \cap f(P) + B \cap f(P)) = f^{-1}(A+B)$.

DEFINITION 2.5, A ring R is said to be left subcommutative if every left ideal of R is a two-ideal. PROPOSITION 2.6. If R is a left artinian D ring, then R is left subcommutative.

Proof. Let M be a left ideal of R. Suppose that $Mr \notin M$ for some $r \in R$. Put $A = \sum \{B \in L(M) \mid Br \subseteq B\}$. Clearly A is the largest left ideal of R contained in M and $Ar \subseteq A$. Since $A \neq M$, there is a left ideal X of R such that $A \subseteq X \subseteq M$, $A \neq X$ and X/A is a simple left R-module.

(Notation. Let $r \in \mathbb{R}$. Ar⁻¹= $(x \mid xr \in \mathbb{A})$)

Then $A \subseteq Ar^{-1} \subseteq Xr^{-1}$, so that $A \subseteq X \cap Xr^{-1} \subseteq X$. Since $Xr \subseteq X$ and X/A is simple, $A = X \cap Xr^{-1}$. By an easy calculation using proposition 2.4, $X = (X \cap Xr^{-1}) + (X \cap Xr)$. $X = (X \cap Xr^{-1}) + (X \cap Xr) = A + (X \cap Xr^{-1})r = A + Ar = A$. It is a contradiction.

THEOREM 2.7. R is a semi-perfect left D ring if and only if R is the finite direct product of left valuation rings.

Proof. (\Rightarrow) Let R be a semi-perfect ring. Then R has a complete of orthogonal idempotents e_1 , e_2 , e_3 , e_n .

Then $R=e_1R\oplus e_2R\oplus \cdots \oplus e_nR$. Since idempotents in a left D ring are central,

 $R = e_1 Re_1 \oplus e_2 Re_2 \oplus \cdots \oplus e_n Re_n$.

Since e_iRe_i is a local ring [2], e_iRe_i is a left valuation ring [4]. Therefore R is the finite direct product of left valuation rings.

(⇐) Since a left valuation ring is a left D ring [4] and any direct product of left D rings is again a left D ring, the theorem is clear.

THEOREM 2.8. Let R be a left D ring. The following assertions are equivalent:

- 1) R is left perfect,
- 2) R is right perfect,
- 3) R is left artinian.

Proof. 3) \Rightarrow 1) and 3) \Rightarrow 2) are obvious[1].

1)⇒3) Since a left or right perfect ring is certainly semi-perfect, we can assume, with out loss of generality, that R is a left valuation ring. If R is left perfect, then R has the ascending chain condition on principal left ideals.

But any finitely generated left ideal of a left valuation ring is principal, and so R has the ascending chain condition on finitely generated left ideals. Therefore it follows that R is left noetherian. Hence R is left artinian[1].

2) \Rightarrow 3) If R is right perfect, then R has the descending chain condition on principal left ideals. Suppose that $A_1 \supset A_2 \supset A_3 \supset \cdots$ is a strictly descending chain of left ideals of R.

Choose $a_i \in A_i$ but $a_i \notin A_{i+1}$. Since R is a left valuation ring, $A_i \supseteq Ra_i \supseteq A_{i+1}$. Hence we obtain a strictly descending chain of principal left ideals, a contradiction.

§ 3. Rational extentions of modules over a D ring.

DEFINITION 3.1. A submodule N of M is called large in M (written $N\subseteq M$) and M is called an essential extention of N provided that $N\cap K\neq 0$ for every nonzero submodule K of M.

DEFINITION 3.2. Let N be a submodule of M. M is called a rational extention of N if for each submodule B such that $N \subseteq B \subseteq M$, $f \in Hom_R(B, M)$ satisfies f(N) = 0 if and only if f = 0 [2].

DEFINITION 3.3. A module M is rationally complete provided that M has no proper rational extention[2].

NOTATIONS 3.4. Let A be an R-module. If $a \in A$, $(a)^R = \{r \in \mathbb{R} \mid ra = 0\}$. C(A) denote the rational completion of A.

PROPOSITION 3.5. A module M is rationally complete if and only if M=C(M).

PROPOSITION 3.6. Let A be any simple left R-module.

Let $S(A) = \{(x)^R | 0 \neq x \in E(A)\}$. Then $x \in C(A)$ if and only if $(x)^R$ is maximal in S(A).

Proof. If $0 \neq x \in C(A)$ and $(x)^R$ is not maximal in S(A), then there is a $0 \neq y \in E(A)$ such that

(x) $^R \subseteq (y)^R$ and there is an $r' \in \mathbb{R}$ such that $r'x \neq 0$ but r'y = 0. Define $\psi : \mathbb{R}x \longrightarrow \mathbb{R}y$ by $\psi(rx) = ry$ for all $r \in \mathbb{R}$. Then ψ can be extended to $\psi \in \operatorname{Hom}(E(A), E(A))$ and $\psi(r'x) = \psi(r'x) = r'y = 0$. Thus $0 \neq r'x \in \operatorname{Ker}\overline{\psi}$ and therefore $\overline{\psi} \neq 0$.

Then since A is simple and $A \cap \text{Ker} \overline{\psi} \neq 0$, $\overline{\psi}(A) = 0$. Thus $C(A) \subseteq \text{Ker} \overline{\psi}$ and in particular $\overline{\psi}(x) = 0$. Hence $Ry = \psi(Rx) = R\psi(x) = 0$.

Thus it follows that y=0 which contradicts the original assumption.

Thus $(x)^R$ is maximal in S(A).

(\Rightarrow) Let $0 \neq x \in E(A)$ and $(x)^R$ is maximal in S(A), Let $\lambda \in A = \text{Hom}(E(A), E(A))$ such that $\lambda(A) = 0$. Since $Rx \neq 0$, there is $r' \in R$ such that $0 \neq r'x$ and $r'x \in A$ and hence $r'\lambda(x) = 0$. Now $(x)^R \subseteq (\lambda(x))^R$ and $r' \notin (x)^R$. Since this contradicts the maximality of $(x)^R$ in S(A), we conclude that if $\lambda \in A$ and $\lambda(A) = 0$. Then $\lambda(x) = 0$ and thus $x \in C(A) = \bigcap \{Ker\lambda | \lambda(A) = 0\}$.

THEOREM 3.7. If R is left subcommutative, then every simple R-module is rationally complete.

Proof. Let A be a left R-module and let $x \in C(A)$. For $a \in A$, $A = Ra \subseteq Rx$. Let $M = (a)^R$ and $I = (x)^R$. Then $(a)^R$ is a maximal left ideal of R. Let ψ be the mapping from R/M into R/I by the composition R/M $\longrightarrow A \longrightarrow Rx \longrightarrow R/I$. Let $\psi(1+M) = y+I$.

Then $\psi(i+M) = i\psi(1+M) = iy+I = 0+I = 0$. But $\text{Ker} \psi = M$, so that $I \subseteq M$.

Hence $(x)^R \subseteq (a)^R$. Since $x \in \mathbb{C}(A)$, $(x)^R = (a)^R$. Thus $(x)^R$ is a maximal left ideal of R, so that $\mathbb{R}x$ is a simple left module and thus $\mathbb{R}x = A$.

THEOREM 3.8. If R is a left perfect D ring, then every R-module is rationally complete.

Proof. Suppose that R is a left perfect D ring. By theorem 2.8, R is right perfect and left artinian and by proposition 2.6, R is left subcommutative. Thus by theorem 3.7, every left simple module over R is rationally complete. By [5] every left R-module is rationally complete.

References

- 1. H. Bass, Finitistic dimension and homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95(1960), 466-488.
- 2. J. Lambek, Lectures on rings and Modules, Waltham: Blaisdell 1966.
- 3. Wolfgang Schwartz, Über die Lösbarkeit gewisser ungleichhungen durch Primzhahlen, ibid. 212 (1963) 150-157.
- W. Stephenson, Modules whose lattice of submodules is distributive. J. London Math. Soc. 28 (1974) 291-310.
- 5. H. Storrer, Rational extensions of modules, Pacific. J. Math. 38. no. 3 (1971) 785-794.