WEAK-AND STRONG CONVERGENCE IN SPACE OF LINEAR OPERATORS

by

Byung Young Kim

Chungbuk National University, Chungju, Korea.

1. INTRODUCTION

Let E be a topological Vector space, and E' its topological dual. The topology on E associated with the family of continuous linear forms $f \in E'$ is called the weak topology of E. If E is a normed vector space then let us call the topology on E associated with the norm the strong topology. A sequence $\{x_n\}$ in a normed linear space E is said to be converges weakly (strongly) to x in E if $\{x_n\}$ converges to x provided E is equipped with the weak (strong) topology.

Choquet [1] proved that if E be a Hilbert space then the statement $\{x_n\}$ converges strongly to x is equivalent to $\{x_n\}$ converges weakly to x and $||x_n||$ tends to ||x||.

Let E and F are normed linear spaces and L(E, F) be the set of all continuous linear map T on E into F. The purpose of this paper is to show that the following two statements are equivalent whenever F is Hilbert space:

- 1) $\{T_n\}$ in L(E,F) converges to T strongly, that is, for each $x \in E$, $\{T_n x\}$ converges to Tx strongly.
- 2) $\{T_n x\}$ converges to T weakly, that is, for each $x \in E$, $\{T_n x\}$ converges to Tx weakly and $||T_n x||$ tends to ||Tx||.

2. PRELIMINARIES

Let a be a fixed element of a Banach space E. Let $\varepsilon > 0$ and let $f_1 f_2 \cdots f_n$ be elements of E'. Consider the set

$$U(a) = U(a : f_1 f_2 \cdot \cdots \cdot f_n, \varepsilon) = \{x : |f_i x - f_i a| < \varepsilon\}, i = 1, 2, \dots n$$

since the class of all sets U(a) with a fixed is a base of neighborhoods of a in the weak topology on E, $\{x_n\}$ converges weakly to x is equivalent to, for every $f \in E'$, we have $f(x_n)$ converges to f(x). On the other hand, $\{x_n\}$ converges strongly to x in E means that $||x_n-x||$ tends to zero.

LEMMA 1: In a Hilbert space E. A sequence $\{x_n\}$ weakly converges to x if and only if $(x_n|y)$ converges to (x|y) for each $y \in E$ where (x|y) is the inner product of x and y.

Proof. Since the map $P_v: x \to (x|y)$ is a continuous linear form for every $y \in E$, the sequence $P_y(x_n)$ converges to $P_y(x)$, that is, $(x_n|y)$ converges to (x|y) for each $y \in E$. On the other hand, from Frechet-Riesz theorem, for every $f \in E'$ there exists an element $y \in E$ such that f(x) = (x|y) for all $x \in E$. It follows that by Hypothesis $(x_n|y)$ converges to (x|y) implies $f(x_n)$ converges to f(x) for every $f \in E'$. Hence f(x) converges weakly to f(x).

LEMMA 2: In a Hilbert space E. If $\{x_n\}$ converges strongly to x then $\{x_n\}$ converges weakly to x. Proof. Since $||x_n-x||$ tends to zero, for every $\varepsilon>0$ and for every non zero y in E there exists a

N>0 such that n>N implies $||x_n-x||<\frac{\varepsilon}{||y||}$, and now, by Cauchy Schwarz inequality $|(x_n|y)-(x|y)|\leq ||x_n-x|| ||y||<\varepsilon$ provided n>N. Thus $(x_n|y)$ converges to (x|y) for every $y\in E$. By Lemma 1, converges weakly to x.

The converse of Lemma 2 is not true. The sequence (e_n) of unit vectors in Hilbert space l^2 does not tend to zero since $||e_n|| = |$ for every n. It tends, however, to zero weakly. Indeed, $(e_n | a) = \tilde{a}_n$ and \tilde{a}_n tends to zero because $\sum |a_n|^2$ converges implies $(a_n)_{n \in \mathbb{N}}$ converges to zero, where $a = (a_n)$ is an element of l^2 .

LEMMA 3. Let E be a Hilbert space.x a point of E and $\{x_n\}$ a sequence of E; the following statements are equivalent.

- 1) $\{x_n\}$ converges strongly to x,
- 2) $\{x_n\}$ converges weakly to x and $||x_n||$ tends to ||x||.

Proof. By Lemma 2 and $|||x|| - ||x||| < ||x_n - x||$, $1) \Rightarrow 2$) is obvious. Let us prove the converse. Since weak convergence implies $(x_n|x)$ converges to $(x|x) = ||x||^2$, $||x_n - x||^2 = ||x_n||^2 + ||x|| - (x_n|x) - (x|x_n)$ tends to zero as $n \to \infty$. In other words $||x_n - x||$ tends to zero, that is, $\{x_n\}$ converges strongly to x.

3. THEOREMS

Let E and F be normed linear spaces. The linear space L(E, F) of continuous linear mappings $T: E \rightarrow F$ have three topologies as the following definition.

Definition 1: The Uniform operator topology in L(E, F) is defined by the metric topology of L(E, F) induced by its norm $||T|| = \sup ||Tx||$. In L(E, F) equipped with the uniform operator $||x|| \le |$ topology, a sequence $\{T_n\}$ converges to T means that $||T_n-T||$ tends to zero. In this case, we call $\{T_n\}$ uniformly converges to T.

Definition 2: The family of sets $U(T:A,\varepsilon) = \{R \in L(E,F) : || (T-R)x || < \varepsilon, x \in A\}$, where A is a finite subset of E and $\varepsilon > 0$ is arbitrary, forms a basis of neighborhoods of a topology for L(E,F). This topology is called the strong operator topology for L(E,F). In the strong operator topology, a sequence $\{T_n\}$ converges to T in L(E,F) if and only if $\{T_nx\}$ strongly converges to Tx for every $x \in E$ in F. We can say roughly that a sequence $\{T_n\}$ strongly converges to T if $||T_nx-Tx||$ tends to zero for every $x \in E$ in F.

Definition 3: The weak operator topology in L(E, F) is the topology defind by the basis of neighborhoods of T,

$$U(T:A,B,\varepsilon) = \{R \in L(E,F): ||f(T-R)x|| < \varepsilon, f \in B, x \in A\}$$

where A and B are an arbitrary finite subset in E and F' (the dual of F) respectively. Thus, in the weak operator topology, a sequence $\{T_n\}$ converges to T means that $\{fT_nx\}$ converges fTx for every $x \in E$ and f in F' and also equivalent to, the sequence $\{T_nx\}$ weakly converges to Tx for each $x \in E$ in the scense of §2 in F. We say that a sequence $\{T_n\}$ weakly converges to T if $\{T_n\}$ converges to T in the weak operator topology for L(E, F).

THEOREM 1: Let E and F are normed linear spaces. In L(E, F), if a sequence $\{T_n\}$ uniformly converges to T then $\{T_n\}$ strongly converges to T.

Proof: For every non zero element x of E and positive real ε , there exists N such that n>N implies $||T_n-T||<\frac{\varepsilon}{||x||}$ because $\{T_n\}$ uniformly converges to T. From $||T_nx-Tx||\leq ||T_n-T|| ||x||$ for every $x\in E$, we have $||T_n-T||<\varepsilon$ for n>N, for every $x\in E$. Hence $\{T_n\}$ strongly converge to T.

THEOREM 2: Let E be a normed linear space and F a Hilbert space. A sequence $\{T_n\}$ in L(E, F) weakly converges to T if and only if $\{(T_n x | y)\}$ tends to $(T_n x | y)$ for each pair (x, y) in $E \times F$.

Proof: By Definition 3 $\{T_n\}$ weakly converges to T means that $\{T_nx\}$ weakly converges to Tx for each $x \in E$ in the Hilbert space F. Lemma 1 asserts that the theorem is true.

THEOREM 3: Let E be a normed linear space and F a Hilbert space. If $\{T_n\}$ strongly converges to T then $\{T_n\}$ weakly converges to T.

Proof: By Cauchy Schwarz inequality, for every pair (x, y) in $E \times F \mid (T_n x \mid y) - (T x \mid y) \mid || T_n x - T x ||$.

Since $\{T_n\}$ strongly converges to T, $||T_nx-Tx||$ tends to zero. Thus, from theorem 2, $\{T_n\}$ converges to T weakly.

THEOREM 4: Let E be a normed linear space and F a Hilbert space, and let T, T in L(E, F). The following two statements are equivalent.

- 1) $\{T_n\}$ strongly converges to T.
- 2) $\{T_n\}$ weakly converges to T and $||T_nx||$ tends to ||Tx|| for every $x \in E$. Proof. From Lemma 3, Definition 2, 3 and Theorem 3, the Theorem is true.

Reference

- 1. Gustave Choquet; Topology. Academic Press New York and London 1966.
- 2. Sterling K. Berberian; Introduction to Hilbert space. Oxford University Press New York 1961.
- 3. John Horvath; Topological vector spaces and distributions volume 1. Addison-Wesley Publishing Company Massachusetts, Ontario 1966.
- 4. N. Dunford and J.T. Schwartz; Linear operators part I. Interscience Publishers, InC. New York 1967.

. દુ ં ધો

약 위상과 강위상이 주어진 선형공간 E에서 수열의 약수렴과 강수렴에 관한 성질을 보조정리로 하여 두 Banach 공간 E의 F사이에 정의된 연속작용소 공간 L(E,F)에서 작용소열 $\{T_n\}$ 이 T에 강수렴하기 위한 필요충분조건은 F가 Hilbert 공간일때는 $\{T_n\}$ 이 T에 약수렴함과 동시에 실수열 $\|T_nx\|$ 가 실수 $\|Tx\|$ 에 수렴할 때이다.