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0. Introduction

Let S be a set, 3, a o-ring of subsets of S, X a normed space, m : 3,—X a vector measure and g
a nonnegative measure on .. In [9] Sachie Ohba has proved that there exist unique m¢ and m such
that m=mg+m, where mo<¢ and mi 1y, In §1 of this paper we shall prove that this result is valid
for outer measure (or,signed measure). Let S be a locally compact Hausdorff space, @B. the o-ring
generated by closed sets of S. In [6] N.Y. Luther has proved that any nonnegative weakely Borel
measure v on B, is uniquely decomposed by regular weakely Borel measure v; and anti-regular weakely
Borel measure v, In § 2 of this paper we shall extend this result to the case of vector measure. And
some properties of vector measure has proved. ‘

1. The Lebesgue Decomposition Theorem

Let S be a set, 3 a o-ring of subsets of S, X a normed space. A set function m defined on X,
with values in X is called a vector measure if for every sequence {Ea} of mutually disjoint sets of

we have m(Lij,.):im(E,.). Following [2] we say that a set function 8 defined on Y is an outer
n= n=1

measure if it is nonnegative, countably subadditive, and it vanishes on the empty set ¢. The set fanction
A defined on Y is called signed measure if it is extended real valued, cduntably additive.

[Definition 1] A vector measure 7 is continuous with respect to an outer messure (or signed me-
asure) f(m<LB) if B(E)=0 implies m(E)=0 for every EE}.. _

Following[4], let m be a vector measure on 3. |[|7|| is called semi-variation of m if |[m(E) ||

=supl§_}1 di m(E;)| for every EEY, where superemum is taken over all finite collections of scalars with
=

|a;] and all partition of E into finite number of disjoint sets in ).
[Proposition 1] Let m be a vector measure on 3, m<B if and only if for every number >0 there
exists a number §=38(e) >0 such that for every ASY] with |f(4) <6 we have ||m(A4) || <e.
Proof. Sufficiency is clear.

Necessity. (i) Let 8 is an outer measure. If it is false, then there exists a number & >0 such that
for every number 9>0 there exists a set A3y, such that B(A48)<d and || m(Ad) || >¢. Taking

d=1/2" and A.=A43, we have 8(A,)<{1/2" and [{m(As) || > for all », I we put B,,—_-kDA,, and
B={1B., then B(B)<A(UAs) S,.i B(4s) 1/2%* for all n. Hence B(B)=0. For every DEY. with

DCB B(D)=0. Since m<B, m(D)=0. We put m(E)=sup {||m(A4) | : ACE, ASY}} Then m(B)
0. On the other hand, m (Bn) >m(4n)> || m(Ax) || 60 for all n. Since {B.)} is decreasing sequence,
by Gould ([5] corollary 3.6) we have m(B)=lim m(B,) >>s&. Therefore we get a contradiction.



(i) Let 8 is a signed measure. By Berberian ([2] Theorem 50.1) 8<|8l, where 18] is total vari-
ation of B. Hence m<|8|. Therefore, proof is clear by above.
[Proposition 2] For any vector measure 7 ; 3 —>X there exists a finite nonnegative measure ¥ on 3
such that:

(1) m<Ly, and

@) v(E)Y<m(E)=sup {(|m(4)]l : ACE, A€} for every EEY,

Proof. See Dinculeanu and Kluvanek ([3[ Theorem 1).

[Definition 2] A vector measure m is singular with respect to an outer measure (or. signed measure)
B(m 1L p) if there exists a set FEY such that E—F<Y,, B(F)=0 and m(E—F; =0 for every EEYL.

[Lemma 1] Any vector measure m . 3,—>X which both m<f and m] § is zero measure.

Proof. (i) Let 8 is an outer measure. Since m_1fS, there exists a set FEY, such that E—FEY,
B(F)=0 and m(E—F)=0 for every EEY.. Since m<B, m(ENF)=0. Hence m(E)=m{(ENF)+m
(E—F)=0.

(i) Let B is a signed measure. Since m 1 f, there exists a set FEY such that E—F=Y, B(F)=0
and m(E—~F)=0 for every EESY. Since m<f, m(F)=0. By Dunford and Schwartz ([4] Lemma IV
10.4) || m(F) || =0 and 0 || m(ENF)| < |Jm(F) || =0. Hence m(ENF)=0. Therefore m=0.

[Theorem 1] Let m : 33——>X be a vector measure and § an outer measure (or. signed measure) on
Y. Then there exist unique 7o and m1 such that mo+m, where mo< and m; 1 8.

Proof. First, we suppose that 8 is an outer measure. By Proposition 2 there exists a finite nonnegative
measure ¥ on Y, such that m<v, By Brooks ([1]) there exist unique vp and v1 such that v=vo+u,
where vo<{f and 1 L8, Since 1118, there exists a set F&3 such that E—FeY], S(F)=0 and
Vvi(E—F) =0 for every EEY,. Since v<B, w(ENF)=0. Hence

V(ENF)=w(ENF) +w(ENF)=w(ENF)
=u(ENF) +vi(E—F)=w(E)

V(E—F)=w(E—F)+w(E—F)=w(E—F)
=v(E—F) +w(ENF) =w(E).

We put my(E) =m(E—F) and mi(E)=m(ENF) for every ESY., Then m(E)=m(E—F)+m(E
NF)=my(E) +m1(E). If B(E)=0, then v(E—F)=w(E)=0. Since m<v, mo(E)=m(E—F)=0,
Hence mo<B. Since v1 LB, there exists a set FEY, such that E—-F=Y, S(F)=0 and w(E—F)=0
for every E€3,. Hence mi(E~F)=m(E—~FN\F)=m(¢)=0. Therefore m; 8.

Let m2 and m3 be another decomposition for m, That is, m=mo+m=mo+ms, where m;<p and
m3 4 B. Then mo—m;=ms—m. Since mo<B and ma<B, (mo—m2)<B. Since mi LB and ms LB, there
exist EY;, REY such that E—ReY,, f(R)=0, mi(E—F) =0, E—FRcY, B(F2)=0 and ms
(E—F)=0 for every EE€},., We put F=FiUF;, then B(F)<B(F)+ B(F2)=0. Hence S(F) =0,
By Dunford and Schwartz ([4] Lemma IV. 10.4) ||mi(E—F) || =0 and ||ms(E—F,) || =0. Since
0 HmE—F) | <llmi(E—F) || =0, mi(E—F)=0. Similarly ms(E—F)=0. Therefore (ms—m;)
18. Since (mo—m2) <P and (mo—my) L B, mo=m; and my=ms by Lemma 1

Next, if 8 is a signed measure. Since total variation |B] is a measure, there exist unique mo and
such that m=my+m, where mo<|8] and m1 1 |8|. By Berberian ([2] Theorem 50, 1) f<!8]. Hence
mo<p and ;1 18.

2. The Decomposition Theorem of weakly Borel measure

Let S be a locally compact Hausdorff space, B(S) (resp. Bw) is o-ring generated by compact (resp.
closed) sets of S, X a normed space. A set function 7 defined on @B (S) (reesp. B.) with values in



X is called Borel vector measure (resp. weakely Borel vector measure; w.B. vector measure) if for every
sequence {En} is mutually disjoint sets of B(S) (Bw») we have m(QE,,):}:‘im(En). A Borel vector

measure m : @ (S) —>X is called regular if for every A=®(S) and every ¢>0 there exists a compact
set KCA, K=®B(S) and an open set GDA, GEB(S) such that for every D=®(S) with DCG—K
we have ||m(D) || <e, The w.B. vector measure m : 8,—X is called regular if for every Ec®,, and
every number ¢>>0 there exists a compact set XCE, K&®, such that ||m(E—K) || <e. The Borel
vector measure {or. w.B. vector measure) = : ®(S) (or. B,)—>X is antiregular if m Ly for every
non-negative regular Borel measure (or. regular w.B. measure) g

[Proposition 3]Any Borel vector measure m : 8(S)—Xis antiregular if and only if for every set
Ec@B(S) there exists a set A such that ANESB(S), m(E—A)=0 and such that m(C) =0 for every
compact set CCA.

Proof. Sufficiency. Sachio Ohba has proved ([9] Proposition 6) Necessity. By Sachio Ohba ([9]
Theorem 3) there exist unique regular mp and antiregular m; such that m=mo+mi, so that it suffices
to show that mo=0. Suppose that 7o (E)7-0 for some E&®(S). Then mo(ENA):0 and by regularity
of mo there exists a compact CCENA such that m(C)7#0 in this case, and that is contrary to
hypothesis since CCA. Hence my(E) =0.

[Theorrm 2] Let m be a w.B. vector measure. Then there exist a vnique regular w.B. vector measure
smp sach that:

@ lmoliL|imll, and

1) |2l < |lImoil for every regular w.B. vector ineasure which satisfies |z || <{jm]||.

Proof. By [8] there exist unique regular w.B. vecior measure mo znd anti-regular w.B. vecior miea-
sure my such that m=mg--m. Let n be a regular w.B. vector measure such that ||»||<|/m|{. By
Proposition 3 of [8] nLlm;. Then there exists a set F&E®B, such that E—F&®B,, mi(F)=0 and »(E
~F) =0 for every EE8,. Hence n(E)=n(ENF) for every EE®,. Since ||z]| < || mol] + Il mll
and l|m(ENF) I =0, |2E)ll= I=ENP) I ImoENF) || + [m(ENF) || = ||mo(ENF) | <
|| mo(E) || for every E=®.. Since ||mo(E) || =||mENF) ||, ||mo(E)||<||m(E)]|l for every
E=®,, this completes proof.

[Definition 3] A w.B. vector measure m | 8,—X is weakely antiregular if largestest regular w.B.
vecter measure(denote #) in the sence of Theorem 2 has zero semi-bariation.

By defiuition = is both weakely anti-regular and regular if and only if, m=0,

[Temica 2] Let m be a w.B. vector measure: B,—X. If m is antiregular, then m is weakely
artivegular.

Proof, Since 7 is regular, 7% Lm., Then there exists a set FEB, such that E—~F=®,, m(F) =9
and m(E~F)=0 for every E€®,, Since ||m||<l|m||, {|@(F) || =0. Hence Hm(ENF || =0.
Therefore || m(E) || =0 for every EC®.. Consequentely 7 is weakely anti-regular.

[Theorem3] Let m be a w.B. vector measure; 8, —X. m is weakely anti-regular if and only if
nl.m for every regular w.B. vector measure 7,

Proof. Sufficiency. Since 7 Lm, there exists a set FEB, such that E—F=®,, m(F)=0 and m

(E—F)=0 for every E€B,. Since||m[|<||m||, (|mENF) || <m(ENF) || < ||m(F) || =0. Hence
@ (ENF)=0, Therefore m is weakely anti-regular.

Necessity. Let » be a arbitrary regular w. B. vector measure, By Proposition 2 there exist nonnegative

measure v, 4 suchthat m<y and n<v, Since v is regular and g is antiregular ([8] Theorem 2 and



Theorem 5), vLu by N.Y. Luther ([7] Theorem 2)., Since m<x and n<y, nlm,

[Theorem 4] Let m be a w.B. vector measure : B,—~X, Then there exist unique regular w.B. vector
measure mo and weakely anti-regular w.B. vector measure m; such that m=mo+m;,

Proof. It is clear by [8] and Lemma 2.
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