DECOMPOSITION FOR VECTOR MEASURE

by

In Suck Lee

Gyeong Sang National University, JinJu, Korea

0. Introduction

Let S be a set, \sum a σ -ring of subsets of S, X a normed space, $m: \sum X$ a vector measure and μ a nonnegative measure on \sum . In [9] Sachie Ohba has proved that there exist unique m_0 and m_1 such that $m=m_0+m_1$, where $m_0 \ll \mu$ and $m_1 \perp \mu$. In §1 of this paper we shall prove that this result is valid for outer measure (or, signed measure). Let S be a locally compact Hausdorff space, \mathcal{B}_w the σ -ring generated by closed sets of S. In [6] N.Y. Luther has proved that any nonnegative weakely Borel measure ν on \mathcal{B}_w is uniquely decomposed by regular weakely Borel measure ν_1 and anti-regular weakely Borel measure ν_2 . In § 2 of this paper we shall extend this result to the case of vector measure. And some properties of vector measure has proved.

1. The Lebesgue Decomposition Theorem

Let S be a set, \sum a σ -ring of subsets of S, X a normed space. A set function m defined on \sum with values in X is called a vector measure if for every sequence $\{E_n\}$ of mutually disjoint sets of

we have $m(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} m(E_n)$. Following [2] we say that a set function β defined on Σ is an outer measure if it is nonnegative, countably subadditive, and it vanishes on the empty set ϕ . The set function λ defined on Σ is called signed measure if it is extended real valued, countably additive.

[Definition 1] A vector measure m is continuous with respect to an outer measure (or signed measure) $\beta(m \ll \beta)$ if $\beta(E) = 0$ implies m(E) = 0 for every $E \in \Sigma$.

Following [4], let m be a vector measure on Σ . ||m|| is called semi-variation of m if ||m(E)|| = $\sup_{i=1}^n d_i \ m(E_i)|$ for every $E \in \Sigma$, where superemum is taken over all finite collections of scalars with $|\alpha_i|$ and all partition of E into finite number of disjoint sets in Σ .

[Proposition 1] Let m be a vector measure on Σ . $m < \beta$ if and only if for every number $\varepsilon > 0$ there exists a number $\delta = \delta(\varepsilon) > 0$ such that for every $A \in \Sigma$ with $|\beta(A)| < \delta$ we have $||m(A)|| < \varepsilon$. Proof. Sufficiency is clear.

Necessity. (i) Let β is an outer measure. If it is false, then there exists a number $\varepsilon_0 > 0$ such that for every number $\delta > 0$ there exists a set $A\delta \in \Sigma$ such that $\beta(A\delta) < \delta$ and $\|m(A\delta)\| \ge \varepsilon_0$. Taking $\delta = 1/2^n$ and $A_n = A\delta$, we have $\beta(A_n) < 1/2^n$ and $\|m(A_n)\| \ge \varepsilon_0$ for all n. If we put $B_n = \bigcup_{k=n}^{\infty} A_k$ and $B = \bigcap_{n=1}^{\infty} B_n$, then $\beta(B) \le \beta(\bigcup_{k=n}^{\infty} A_k) \le \sum_{k=n}^{\infty} \beta(A_k) \ 1/2^{n-1}$ for all n. Hence $\beta(B) = 0$. For every $D \in \Sigma$ with $D \subset B$ $\beta(D) = 0$. Since $m < \beta$, m(D) = 0. We put $m(E) = \sup\{\|m(A)\| : A \subset E, A \in \Sigma\}$ Then $m(B) \ge 0$. On the other hand, $m(B_n) \ge m(A_n) \ge \|m(A_n)\| \ge \varepsilon_0$ for all n. Since $\{B_n\}$ is decreasing sequence, by Gould ([5] corollary 3.6) we have $m(B) = \lim_{n \to \infty} m(B_n) \ge \varepsilon_0$. Therefore we get a contradiction.

- (ii) Let β is a signed measure. By Berberian ([2] Theorem 50.1) $\beta < |\beta|$, where $|\beta|$ is total variation of β . Hence $m < |\beta|$. Therefore, proof is clear by above. [Proposition 2] For any vector measure $m : \sum \longrightarrow X$ there exists a finite nonnegative measure ν on Σ such that:
 - (1) $m \ll \nu$, and
 - (2) $\nu(E) \leq m(E) = \sup \{ || m(A) || : A \subset E, A \in \Sigma \} \text{ for every } E \in \Sigma.$

Proof. See Dinculeanu and Kluvanek ([3[Theorem 1).

[Definition 2] A vector measure m is singular with respect to an outer measure (or, signed measure) $\beta(m \perp \beta)$ if there exists a set $F \in \Sigma$ such that $E - F \in \Sigma$, $\beta(F) = 0$ and m(E - F) = 0 for every $E \in \Sigma$. [Lemma 1] Any vector measure $m : \Sigma \longrightarrow X$ which both $m \leqslant \beta$ and $m \perp \beta$ is zero measure.

- Proof. (i) Let β is an outer measure. Since $m \perp \beta$, there exists a set $F \in \Sigma$ such that $E F \in \Sigma$, $\beta(F) = 0$ and m(E F) = 0 for every $E \in \Sigma$. Since $m \leqslant \beta$, $m(E \cap F) = 0$. Hence $m(E) = m(E \cap F) + m(E F) = 0$.
- (ii) Let β is a signed measure. Since $m \perp \beta$, there exists a set $F \in \Sigma$ such that $E F \in \Sigma$, $\beta(F) = 0$ and m(E F) = 0 for every $E \in \Sigma$. Since $m < \beta$, m(F) = 0. By Dunford and Schwartz ([4] Lemma IV 10.4) ||m(F)|| = 0 and $0 \le ||m(E \cap F)|| \le ||m(F)|| = 0$. Hence $m(E \cap F) = 0$. Therefore m = 0.

[Theorem 1] Let $m: \sum \longrightarrow X$ be a vector measure and β an outer measure (or, signed measure) on Σ . Then there exist unique m_0 and m_1 such that $m_0 + m_1$, where $m_0 \leqslant \beta$ and $m_1 \perp \beta$.

Proof. First, we suppose that β is an outer measure. By Proposition 2 there exists a finite nonnegative measure ν on Σ such that $m < \nu$. By Brooks ([1]) there exist unique ν_0 and ν_1 such that $\nu = \nu_0 + \nu_1$, where $\nu_0 < \beta$ and $\nu_1 \perp \beta$. Since $\nu_1 \perp \beta$, there exists a set $F \in \Sigma$ such that $E - F \in \Sigma$, $\beta(F) = 0$ and $\nu_1(E - F) = 0$ for every $E \in \Sigma$. Since $\nu_0 < \beta$, $\nu_0(E \cap F) = 0$. Hence

$$\nu(E \cap F) = \nu_0(E \cap F) + \nu_1(E \cap F) = \nu_1(E \cap F)$$

$$= \nu_1(E \cap F) + \nu_1(E - F) = \nu_1(E)$$

$$\nu(E - F) = \nu_0(E - F) + \nu_1(E - F) = \nu_0(E - F)$$

$$= \nu_0(E - F) + \nu_0(E \cap F) = \nu_0(E).$$

We put $m_0(E) = m(E-F)$ and $m_1(E) = m(E \cap F)$ for every $E \in \Sigma$. Then $m(E) = m(E-F) + m(E \cap F) = m_0(E) + m_1(E)$. If $\beta(E) = 0$, then $\nu(E-F) = \nu_0(E) = 0$. Since $m < \nu$, $m_0(E) = m(E-F) = 0$. Hence $m_0 < \beta$. Since $\nu_1 \perp \beta$, there exists a set $F \in \Sigma$ such that $E - F \in \Sigma$, $\beta(F) = 0$ and $\nu_1(E-F) = 0$ for every $E \in \Sigma$. Hence $m_1(E-F) = m(E-F \cap F) = m(\phi) = 0$. Therefore $m_1 \perp \beta$.

Let m_2 and m_3 be another decomposition for m. That is, $m=m_0+m_1=m_2+m_3$, where $m_2 \leqslant \beta$ and $m_3 \perp \beta$. Then $m_0-m_2=m_3-m_1$. Since $m_0 \leqslant \beta$ and $m_2 \leqslant \beta$, $(m_0-m_2) \leqslant \beta$. Since $m_1 \perp \beta$ and $m_3 \perp \beta$, there exist $F_1 \in \Sigma$, $F_2 \in \Sigma$ such that $E-F_1 \in \Sigma$, $\beta(F_1)=0$, $m_1(E-F_1)=0$, $E-F_2 \in \Sigma$, $\beta(F_2)=0$ and $m_3(E-F_2)=0$ for every $E \in \Sigma$. We put $F=F_1 \cup F_2$, then $\beta(F) \leqslant \beta(F_1)+\beta(F_2)=0$. Hence $\beta(F)=0$. By Dunford and Schwartz ([4] Lemma IV. 10.4) $||m_1(E-F_1)||=0$ and $||m_3(E-F_2)||=0$. Since $0 \leqslant ||m_1(E-F)|| \leqslant ||m_1(E-F_1)||=0$, $m_1(E-F)=0$. Similarly $m_3(E-F)=0$. Therefore $(m_3-m_1) \perp \beta$. Since $(m_0-m_2) \leqslant \beta$ and $(m_0-m_2) \perp \beta$, $m_0=m_2$ and $m_1=m_3$ by Lemma 1

Next, if β is a signed measure. Since total variation $|\beta|$ is a measure, there exist unique m_0 and m_1 such that $m=m_0+m_1$, where $m_0 < |\beta|$ and $m_1 \perp |\beta|$. By Berberian ([2] Theorem 50.1) $\beta < |\beta|$. Hence $m_0 < \beta$ and $m_1 \perp \beta$.

2. The Decomposition Theorem of weakly Borel measure

Let S be a locally compact Hausdorff space, $\mathcal{B}(S)$ (resp. \mathcal{B}_w) is σ -ring generated by compact (resp. closed) sets of S, X a normed space. A set function m defined on $\mathcal{B}(S)$ (reesp. \mathcal{B}_w) with values in

X is called Borel vector measure (resp. weakely Borel vector measure; w.B. vector measure) if for every sequence $\{E_n\}$ is mutually disjoint sets of $\mathcal{B}(S)$ (\mathcal{B}_w) we have $m(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} m(E_n)$. A Borel vector measure $m: \mathcal{B}(S) \longrightarrow X$ is called regular if for every $A \in \mathcal{B}(S)$ and every $\varepsilon > 0$ there exists a compact set $K \subset A$, $K \in \mathcal{B}(S)$ and an open set $G \supset A$, $G \in \mathcal{B}(S)$ such that for every $D \in \mathcal{B}(S)$ with $D \subset G - K$ we have $||m(D)|| < \varepsilon$. The w.B. vector measure $m: \mathcal{B}_w \to X$ is called regular if for every $E \in \mathcal{B}_w$ and every number $\varepsilon > 0$ there exists a compact set $K \subset E$, $K \in \mathcal{B}_w$ such that $||m(E - K)|| < \varepsilon$. The Borel vector measure (or. w.B. vector measure) $m: \mathcal{B}(S)$ (or. $\mathcal{B}_w) \longrightarrow X$ is antiregular if $m \perp \mu$ for every non-negative regular Borel measure (or. regular w.B. measure) μ .

[Proposition 3] Any Borel vector measure $m : \mathfrak{G}(S) \to X$ is antiregular if and only if for every set $E \in \mathfrak{G}(S)$ there exists a set A such that $A \cap E \in \mathfrak{G}(S)$, m(E-A) = 0 and such that m(C) = 0 for every compact set $C \subset A$.

Proof. Sufficiency. Sachio Ohba has proved ([9] Proposition 6) Necessity. By Sachio Ohba ([9] Theorem 3) there exist unique regular m_0 and antiregular m_1 such that $m=m_0+m_1$, so that it suffices to show that $m_0=0$. Suppose that $m_0(E)\neq 0$ for some $E\in \mathcal{B}(S)$. Then $m_0(E\cap A)\neq 0$ and by regularity of m_0 there exists a compact $C\subset E\cap A$ such that $m_0(C)\neq 0$ in this case, and that is contrary to hypothesis since $C\subset A$. Hence $m_0(E)=0$.

[Theorem 2] Let m be a w.B. vector measure. Then there exist a unique regular w.B. vector measure m_0 such that:

- (i) $||m_0|| \le ||m||$, and
- (ii) $||n|| \le ||m_0||$ for every regular w.B. vector measure which satisfies $||n|| \le ||m||$.

Proof. By [8] there exist unique regular w.B. vector measure m_0 and anti-regular w.B. vector measure m_1 such that $m=m_0+m_1$. Let n be a regular w.B. vector measure such that $||n|| \le ||m||$. By Proposition 3 of [8] $n \perp m_1$. Then there exists a set $F \in \mathcal{B}_w$ such that $E - F \in \mathcal{B}_w$, $m_1(F) = 0$ and n(E - F) = 0 for every $E \in \mathcal{B}_w$. Hence $n(E) = n(E \cap F)$ for every $E \in \mathcal{B}_w$. Since $||n|| \le ||m_0|| + ||m_1||$ and $||m_1(E \cap F)|| = 0$, $||n(E)|| = ||n(E \cap F)|| \le ||m_0(E \cap F)|| + ||m_1(E \cap F)|| = ||m_0(E \cap F)|| \le ||m_0(E)||$ for every $E \in \mathcal{B}_w$. Since $||m_0(E)|| = ||m(E \cap F)||$, $||m_0(E)|| \le ||m(E)||$ for every $E \in \mathcal{B}_w$, this completes proof.

[Definition 3] A w.B. vector measure $m: \mathcal{C}_w \to X$ is weakely antiregular if largestest regular w.B. vector measure (denote \overline{m}) in the sence of Theorem 2 has zero semi-bariation.

By definition m is both weakely anti-regular and regular if and only if, m=0.

[Lemma 2] Let m be a w.B. vector measure: $\mathbb{B}_{w} \to X$. If m is antiregular, then m is weakely entiregular.

Proof. Since \bar{m} is regular, $\bar{m} \perp m$. Then there exists a set $F \in \mathcal{B}_w$ such that $E - F \in \mathcal{B}_w$, m(F) = 0 and $\bar{m}(E - F) = 0$ for every $E \in \mathcal{B}_w$. Since $||\bar{m}|| \leq ||m||$, $||\bar{m}(F)|| = 0$. Hence $||\bar{m}(E \cap F)|| = 0$. Therefore $||\bar{m}(E)|| = 0$ for every $E \in \mathcal{B}_w$. Consequently m is weakly anti-regular.

[Theorem3] Let m be a w.B. vector measure; $\mathfrak{B}_w \to X$. m is weakely anti-regular if and only if $n \perp m$ for every regular w.B. vector measure n.

Proof. Sufficiency. Since $\bar{m} \perp m$, there exists a set $F \in \mathcal{G}_w$ such that $E - F \in \mathcal{G}_w$, m(F) = 0 and $\bar{m}(E - F) = 0$ for every $E \in \mathcal{G}_w$. Since $||\bar{m}|| \leq ||m||$, $||\bar{m}(E \cap F)|| \leq m(E \cap F) || \leq ||m(F)|| = 0$. Hence $\bar{m}(E \cap F) = 0$. Therefore m is weakly anti-regular.

Necessity. Let n be a arbitrary regular w. B. vector measure, By Proposition 2 there exist nonnegative measure ν , μ such that $m \le \mu$ and $n \le \nu$. Since ν is regular and μ is antiregular ([8] Theorem 2 and

Theorem 5), $\nu \perp \mu$ by N.Y. Luther ([7] Theorem 2). Since $m \lt \mu$ and $n \lt \nu$, $n \perp m$,

[Theorem 4] Let m be a w.B. vector measure: $\mathcal{B}_{w} \to X$. Then there exist unique regular w.B. vector measure m_0 and weakely anti-regular w.B. vector measure m_1 such that $m=m_0+m_1$.

Proof. It is clear by [8] and Lemma 2.

Reference

- (1) J.K. Brooks, The Lebesgue Decomposition Theorem for measure, Amer. Math. monthly, 1971, vol 78-6, 660-661.
- (2) S.K. Berberian, Measure and Integration, Collier-Macmmillian Limited, 1965, London.
- (3) N.Dinculeanu and J.Kluvanek, On the vector measure, Proc. London math. soc., vol 17, 1967, 505-512.
- [4] N. Dunford and J.T. Schwartz, Linear operator (Part I), Interscience Publishes INC., New York.
- (5) G.G. Gould, Integration over vector valued measures, Proc. London math. soc. 15., 1965, 193-205.
- (6) N.Y. Luther, Lebesgue decomposition and weakely Borel measure, Duke math. J. vol 135., 1968, 601-615.
- [7] _____, A Note on regular and anti-regular (weakely) Borel measures, Duke. math. J. vol 38., 1971, 147—149.
- (8) Lee. I.S., Note on the weakely Borel vector measure, J. of Gyeongsang N. univ. vol 12., 1973, 77-79.
- (9) Sachio Ohba, The decomposition theorem for vector measure, Yokohama math. vol XIX. no 1-8., 1971, 23-28.