On Nearly Compact Spaces

by

Dall-Hoon Cho

Air Force Academy, Seoul, Korea

In this paper, I introduce some notions weaker than compactness, investigate some properties of this notions, and find the relations between them.

Given atopological property P a P-space X is called P-closed provided X is a closed subset in every P-space in which it can be imbedded. let us denote H-closed for Hausdorff-closed, for regular T_1 -closed spaces.

Lemma 1. If X is a Hausdorff space, the following conditions are equivalent;

- (a) X is H-closed.
- (b) Every open filterbase on X has at least one adherent point.
- (c) Every open covering of X contains a finite dense subcovering.
- Proof. (a) implies (b). If there is open filterbase \mathfrak{F} with no adherent point, choose a now point P not in X and take $Y=X\cup\{p\}$ with the topology generated by $T\cup\{U\cup\{p\}:U\in\mathfrak{F}\}$ where T is the topology on X. Then Y is a Hausdorff space and X is not closed in Y.
- (b) implies (c). Suppose there is an open covering $\mathfrak U$ of X such that $\mathfrak U$ contains no finite dense subcovering. Then $\mathfrak F = \{(C_1U)^c : U \in \mathfrak U\}$ is an open filterbase which has no adherent point.
- (c) implies (a) Suppose Y is a Hausdorff space contains X and X is not closed in Y. Take a limit point p of X in Y which is not an element of X, and for each x in X disjoint neighborhoods V_x , U_x of x and p respectively. Then $\{V_x \cap X : x \in X\}$ is an open covering of X which has no finite dense subcovering.

By condition (c) we obtain the following;

Corrollary. A regular T₁-space is H-closed if it is compact.

Example. Let X be the unit interval of R with the topology generated by the open intervals and Q the rationals. Then

- (i) X is H-closed and not regular.
- (ii) X is completely Hausdorff space, hence it has the Stone-Weierstrass property by 6.7 of [6].
- (iii) $X \cdot Q \subset X$ is closed subset of H-closed space which is not H-closed.

H-closed subspace of Hausdorff space is closed, but the converse is false as the above example. In fact it is an unsolved problem to find a necessary and sufficient condition for a subset of an H-closed space to be H-closed. Only I know is that regular closed subset (i,e. the closed subset that is equal to the closure of its interior) of H-closed space is H-closed.

An open filterbase of a topological space is called regular filterbase if it is equivalent with a closed filterbase; that is an open filterbase in which each set contains the closure of some member of the filterbase.

Lemma 2. For regular T_1 -space X, the followings are equivalent;

- (a) X is R-closed.
- (b) Every regular filterbase on X has at least one adherent point.
- (c) Every maximal regular filterbase is convergent.

Proof. (a) implies (b). It is similar to the proof of lemma 1.

- (b) iff (c). It can be proved by a routine manner.
- (b) implies (a). Suppose X is not R-closed, then there is a regular T_1 -space Y such that $X \subset Y$ and X is not closed in Y. Take a point $p \in CIX-X$ and let ν be the complete neighborhood system of p. Then by the regularity of Y we know that ν is a regular filterbase in Y and $X \cap \nu$ is also a regular filterbase in X, and it has no adherent point.

Lemma 3. If X is R-closed, then each countable open filterbase in X has an adherent point.

Proof. let $\mathfrak{U} = \{U_1, U_2, \dots\}$ be any countable open filterbase in X, and without loss of generality assume that $U_n \supset U_{n+1}$. There exist regular filterbases that are coaser than \mathfrak{U} (e.g. $\{X\}$), hence by Zern's lemma there is a maximal regular filterbase \mathfrak{M} . From lemma 2, we have an adherent point p of \mathfrak{M} , and p must be also an adherent point of \mathfrak{U} .

Because if p is not an adherent point of $\mathfrak U$ there is an m such that for all $n \ge m$, p is not in the closure of U_n . By regularity of X, there is an open neighborhood G of p such that whose closure does not meet with CIU^n , n m. Since $(CIG)^c$ is regular open, the collection $(CIG)^c \cap \mathfrak M$ is a regular filterbase which is strictly finer than $\mathfrak M$ and coaser than $\mathfrak U$. This contradicts the maximality of $\mathfrak M$. This completes the proof.

A space X is called feebly compact (or lightly compact) if each nbd-finite family of open subsets of X is finite.

Lemma 4. A space X is feebly compact if and only if every countable open filterbase in X has an adherent point.

Proof. (necessity) If for some countable open filterbase $\mathfrak{F} = \{G_n\}$, ad $\mathfrak{F} = 0$. We may suppose without loss of generality $G_n \supset G_n + 1$ for every n. Since ad $\mathfrak{F} = 0$, is a nbd finite family. Hence by hypothesis \mathfrak{F} must be finite and it is a filterbase. Hence ad $\mathfrak{F} = \bigcap CIG_n \neq 0$. This contradiction shows that every countable open filterbase has nonvoid adherence.

(sufficiency) Suppose $\mathfrak U$ is a nbd-finite family of open subsets of X. If $\mathfrak U$ is not finite we can choose a countable infinite subset $\{U_n\} \subset \mathfrak U$. Consider the collection $\mathfrak F$ of all sets $V_n = \bigcup_{i=n}^{\infty} U_i$, $n=1,2,\dots$, then $\mathfrak F$ is a countable open filterbase in X. And by hypothesis $\mathfrak F$ has an adherent point p. Since each neighborhood of p meets with every member of $\mathfrak F$, each neighborhood of p meets with infinitely many U_n 's. Hence $\mathfrak U$ is not nbdfinite at p.

From lemma 1 and 2 we have the results;

Theorem 1. (a) Every R-closed space is feebly compact.

(b) Every H-closed space is feebly compact.

Theorem 2. If X is countably compact, it is feebly compact.

Proof. Suppose X is countably compact and there is a countable open filterbase $\mathfrak{F} = \{U_n\}$ that has no adherent point. Then the collection \mathfrak{U} of all complements of closures of U_n is a countable open cover of X and since X is countably compact \mathfrak{U} has a finite subcover $\{(CIU_1)^c, (CIU_2)^c, \dots, (CIU_n)^c\}$ and $\bigcup_{i=1}^n (CIU_i)^c = (\bigcap_{i=1}^n CIU_i)^c = X$. Hence $\bigcap_{i=1}^n CIU_i = 0$. But it contradicts to the fact that \mathfrak{F} is a filterbace.

Therefore & must have nonvoid adherence.

Every sequentially compact space is countably compact and hence feebly compact. A space is called χ_0 -bounded if every countable subset has compact closure.

Theorem 3. If X is χ_0 -bounded, it is sequentially compact.

Proof. If $\{x_n\}$ is a sequence in χ_0 -bounded space X, then $C = Cl\{x_n\}$ is compact, and the sequence $\{x_n\}$ in compact space C has a convergent subsequence.

By this theorem and the previous remark we may conclude that;

Theorem 4. Every χ_0 -bounded space is feebly compact.

A Hausdorff space is called Lindelöf space if each open covering contains a countable subcovering.

Theorem 5. If X is Lindelöf and feebly compact, X is H-closed.

Proof. Using lemma 1, we prove the theorem by showing that each open covering has a finite dense subcovering. Let Q be any open covering of X, then Q has a countable subcovering $\mathfrak{U} = \{U_1, U_1, \cdots\}$ since X is a Lindelöf space. If \mathfrak{U} has no finite dense subcovering, the collection v of all sets $V_n = (\bigcup_{i=1}^n CIU_i)^c$, n=1, 2, ..., is a countable open filterbase in X. Since X is feebly compact, v has an adherent point by lemma 4. On the other hand, for each point x in X there is at least on U_n containing x, and U_n is an open set not meeting V_n . Hence x is not an adherent point of v. It is contradiction. Therefore \mathfrak{U} and Q must have a finite dense subcovering. It completes the proof.

Theorem 6. If X is Lindelöf and χ_0 -bounded, it is compact.

Proof. By theorem 3 and the remark above theorem 3 the x_0 -bounded space is countable compact. And the countably compact Lindelöf space is compact. This proves theorem.

Let Ω be the first uncountable ordinal number then by [1],

Lemma 5. Every countable subset of

$$\{0, \Omega \} = \{x; x \text{ is an ordinal, } 0 \le x < \Omega\}$$

has an upper bound in $(0, \Omega)$.

Example. Let Y be the space $[0, \Omega)$ (with the order topology then as a subspace of the compact space $[0, \Omega)$. Y has the properties;

- (i) Y is feebly compact by lemma 5 and theorem 2.
- (ii) Y is normal, hence regular.
- (iii) Y is neither H-closed nor R-closed.

References

- 1. J.Dugundji, Topology, Allyn and Bacon, Boston 1970.
- 2. G. Gross and G. Vigline, Some Topological Properties Weaker than Compactness, Pacific J. Math. Vol 35, No 3, 1970
- 3. H. Herlich, Tv-Abgeschlossenheit un Tv-minimalitat, Math. Zeischr. 88, 1961.
- 4. H. Herlich, Regular-closed, Urysohn-closed and Complete Hausdorff-closed Spaces, Proc. of A.M.S. 1972.
- J. Mioduszewski and L. Rudolf, H-closed and Extremally disconnected Hausdorff Spaces, Warszawa, Dissertations 1969.
- 6. J. Poter and J. Thomas, On H-closed and Minimal Hausdorff Spaces, Trans. of A.N.S. 138, 1969.
- 7. R.M. Stephenson, Jr., A countable Minimal Urysohn Space is Compact. Proc. of A.M.S. 22, 1966.
- 8. R.M. Stephenson, Two R-closed Spaces, Can. J. Math. Vol. XXIV, No 2, 1972.