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On Nearly Compact Spaces
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In this paper, I introduce some notions weaker than compactness, investigate some properties of this
notions, and find the relations between them.

Given atopological property P a P-space X is called P-closed provided X is a closed subset in every
P-space in which it can be imbedded. let us denote H-closed for Hausdorff-closed, for regular Ti-closed
spaces.

Lemma 1, If X is a Hausdorff space, the following conditions are equivalent;

(a) X is H-closed.

(b) Every open filterbase on X has at least one adherent point.

(c) Every open covering of X contains a finite dense subcovering.

Proof. (a) implies (b). If there is open filterbase §§ with no adherent point, choose a now point P
not in X and take Y=XU {#} with the topology generated by TU {UU {p} : USE} where T is the
topology on X, Then Y is a Hausdorff space and X is not closed in Y,

(b) implies (c). Suppose there is an open covering Ul of X such that I contains no finite dense
subcovering. Then §F= {{(C,U)¢: U=1} is an open filterbase which has no adherent peint.

(c) implies (a) Suppose Y is a Hausdorff space contains X and X is not closed in Y. Take a limit
point » of X in Y which is not an element of X, and for each x in X disjoint neighborhoods Vi, Uk
of z and p respectively. Then {V:NX :z&X) is an open covering of X which has no finite dense
subcovering.

By condition (c) we obtain the following;

Corrollary. A regular Ti-space is H-closed if it is compact.

Example. Let X be the unit interval of R with the topology generated by the open intervals and @
the rationals. Then

(i) X is H-closed and not regular.

(ii) X is completely Hausdorff space, hence it has the Stone-Weierstrass property by 6.7 of [6].

(iii) X-QCX is closed subset of H-closed space which is not H-closed.

H-closed subspace of Hausdorff space is closed, but the converse is false as the above example. In
fact it is an unsolved problem to find a necessary and sufficient condition for a subset of an H-closed
space to be H-closed. Only I know is that regular closed subset (i,e. the closed subset that is equal to
the closure of its interior) of H-closed space is H-closed.

An open filterbase of a topological space is called regular filterbase if it is equivalent with a closed
filterbase; that is an open filterbase in which each set contains the closure of some member of the
filterbase.



Lemma 2. For regular Ti-space X, the followings are equivalent;

(8) X is R-closed.

(b) Every regular filterbase on X has at least one adherent point,

(c) Every maximal regular filterbase is convergent.

Proof. (a) implies (b). It is similar to the proof of lemma 1.

(b) iff (). It can be proved by a routine manner.

(b) implies (a). Suppose X is not R-closed, then there is a regular Ti-space Y such that XCY and
X is not closed in Y. Take a point p=CIX-X and let v bz the complete neighborhood system of .
Then by the regularity of Y we know that v is a regular filterbasz in ¥ and X(Jv is also a regular
filterbase in X, and it has no adherent point.

Lemma 3. If X is R-closed, then each countable open filterbase in X has an adharent point.

Proof. let W= (U4, Uy, +ee-ee } be any countable open filterbase in X, and without loss of generality
assume that U,DUn,1. There exist regular filterbases that are coaser than W (e.g. {X}), hence by
Zorn’s lemma there is a maximal regular filterbase 9. From lemma 2, we have an adherent point »
of IR, and p must be also an adherent point of 1.

Because if p is not an adherent point of U there is an m such that for all #>m, 2 is not in the
closure of U, By regularity of X, there is an open neighborhood G of p such that whose closure
does not meet with CIU», n m. Since {(CIG)® is regular open, the collection (CIG) NN is a regular
filterbase which is strictly finer than 9% and coaser than W. This contradicts the maximality of IR,
This completes the vroof.

A space X is called feebly compact (or lightly compact) if each nbd-finite family of open subsets of
X is finite,

Lemma 4. A space X is feebly compact if and only if every countable open filterbase in X has an
adherent point,

Proof. (necessity) If for some countable open filterbase §= {G,}, ad §F=0. We may suppose without
loss of generality Ga>Gn-+1 for every n, Since ad F=0, is a nbd finite family. Hence by hypothesis
¥ must be finite and it is a filterbase. Hence ad §=[\CIGn#£0, This contradiction shows thai every
countable open filterbase has nonvoid adherence.
~ {sufficiency) Suppose 1l is a nbd-finite family of open subsets of X. If 11 is not finite we can choose

a countable infinite subset {Un) C 1. Consider the collection § of all sets Vo= D U, n=1,2, , then

% is a countable open filterbase in X, And by hypothesis §§ has an adherent point p. Since each neig-
hborhood of p meets with every member of &, each neighborhood of p meets with infinitely many
U.s. Hence U is not nbdfinite at p,

From lemma 1 and 2 we have the results;

Theorem 1. (a) Every R-closed space is feebly compact.

(b) Every H-closed space is feebly compact.

Theorem 2, If X is countably compact, it is feebly compact.

Proof. Suppose X is countably compact and there is a countable open filterbase &= {U,} that has no
adherent point. Then the collection 11 of all complements of closures of Uy is a countable open cover of
X and since X is countably compact U has a finite subcover {(CIUy)C, (CIUR)E,.---.- , (CIU,)€} and

Q(CI(J})C = (_rjleIL/i)c:X. Hence f_)lCIUs=O. But it contradicts to the fact that §§ is a filterbace.



Therefore §§ must have nonvoid adherence.

Every sequentialy compact space is countably compact and hence feebly compact. A space is called
%0-bounded if every countable subset has compact closure. :

Theorem 3. If X is yo -bounded, it is sequentialy compact. )

Proof.If {z»} is a sequence in Yo -bounded space X, then C=Cl{zs} is compact, and the sequence
{za} in compact space C has a convergent subsequence.

By this theorem and the previous remark we may conclude that;

Theorem 4, Every o -bounded space is feebly compact.

A Hausdorff space is called Lindelof space if each open covering contains a countable subcovering.

Theorem 5. If X is Lindeléf and feebly compact, X is H-closed.

Proof. Using lemma 1, we prove the theorem by showing that each open covering has a finite dense
subcovering. Let @ be any open covering of X, then @ has a countable subcovering U = {Uy, UL, -+
since X is a Lindel6f space. If 11 has no finite dense subcovering, the collection v of all sets V,=

(QICI&)C, n=1, 2,°-, is a countable open filterbase in X  Since X is feebly compact,v has an

adherent point by lemma 4, On the other hand, for each point z in X there is at least on U, containing
xz, and U, is an open set not meeting V.. Hence x is not an adherent point of v, It is contradiction.
Therefore I and @ must have a finite dense subcovering. It completes the proof.

Theorem 6. If X is Lindeldéf and 3o-bounded, it is compact.

Proof. By theorem 3 and the remark above theorem 3 the zyp-bounded space is countable compact.
And the countably compact Lindelof space is compact. This proves theorem.

Let  be the first uncountable ordinal number then by [1],

Lemma 5. Every countable subset of

(0, Q{= {z:z is an ordinal, 0z}

has an upper bound in (0, (.

Example. Let Y be the space [0,  { with the order topology then as a subspace of the compact space
0, ), Y has the properties;

(i) Y is feebly compact by lemma 5 and theorem 2.

(ii) Y is normal, hence regular.

(iii) Y is neither H-closed nor R-closed.
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