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ABSTRACT. A formal theory to explain the Stark effect in molecular exciton states is developed
using the second-quantization formalism. In this theory not only the Stark effect but also the Davy.
dov effect are explicitly taken into consideration since the observed spectral splitting in the UV
spectra for molecular erystals with two or more molecules per unit cell may be the result of combination
of the above two effects. Especially for molecular crystals containing two molecules in a unit cell
the splitting is shown to be hyperbolically dependent upon the strength of an externally applied,
uniform electric field, from which informations regarding the excited state dipole moments of a

single molecule may be obtained.

observed in the solution or gas phase spectra ap-

1. INTRODUCTION pear in the cryvstal spectra, too. The eflect of
intermolecular interactions on the crystal spectra

The UV absorption spectra of pure molecular shows up, though not considerable, through the
crystals, where intermolecular interactions are shift of band centers and/or increased(or decreas-
very weak, show in many respects appearances ed) band intensities. In particular in molecular
similar to those of the corresponding solution or crystals which contain two or more molecules in
gas phase spectra; that is, the absorption bands a unit cell the splitting of absorption bands a-
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-riges, which is not observable in the solution or
.gas phase spectra. Such spectral splitting are
due to the resonance interactions among trans
lationally inequivalent sets of molecules in the
_erystal and the corresponding phenomeonon is
now called “the Davydov splitting” following
“the name of Russian physicist who first explain-
.ed the observed spectral splitting theoretical®
Ay 16

Measurements and theoretical interpretations of
the Davydov splitting are important because they
.can give us a good deal of insight into the
“nature of intermolecular interactions in many mo-
Jecular crystals. Unfortunately, for many molec-
ular crystals the magnitude of Davydov splitting
is not quite notable and it is not an easy matter
to measure the splitting with sufficient accuracy
in actual experiments. A number of molecular
crystals (particularly, of aromatic hydrocarbons)
have been reported to have the splitting of a
few hundred cm™. 7% Most of theoretical caleu-
lations of the Davydov splitting for these crystals
have been performed using the dipole-dipole
vielded reasonable

approximation and have

results.

On the other hand Hochstrasser and his co~
workers®1® have recenly published a series of pa
pers regarding the effect of an externally appli-
ed, uniform electric field on the absorption
spectra of molecular erystals and have suggested a
new method of determining the (electric) dipole
moment of a single molecule in an electronically
excited state. They have

simplified manner that for molecular crystals con-

shown in somewhat

taining two or more molecules in a unit cell
the spectral splitting can be induced by the ap-
plied electric field even when the Davydov split-
ting is not considered to be observable, and such
a spectral splitting, which will be referred to as
the Stark splitting henceforth, is related to the
.difference between the dipole moment for the
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ground state and that for an electronically ex
cited state the transition to which corresponds to
the observed ahsorption band. Hence, measure-
ments of the Stark splitting can provide a means
of estimating the magnitude of dipole moment
for a single molecule in an electronically excited
state, and Hochstrasser and his co-workers have
indeed carried out experiments employing the
uniform electric field ranging from 2. 0x10¢ to
10. 0 X 10* volts/cm. They have reported that an
electric field of 7.3x10% volts/ecm gave a mean
Stark splitting of 5.9cm™' for benzophenone
crystals in the !nz* state at 4. 2°K. Also, the ob"
served Stark splitting were found to increase line-
arly with increasing electric field strength and
the slopes of thus obtained straight lines were
used for estimating the magnitudes of dipole
moments for the molecule in various excited states
involved in the transitions corresponding to the
observed absorption bands. strictly
speaking, the results obtained by Hochstrasser e¢
al. must be said to be applicable only to the
case where the Davydov and intermolecular
interaction effect are negligible compared to the
effect of electric field. Also, in order to obtain
theoretically interpretable results one must per-
form the experiment under the condition that
enables the Stark splittings to be observed at the
field strength kept as low as possible because too
strong field may cause some secondary effects
which cannot be handled theroetically very well.

However,

In this paper the effect of an externally appli-
ed, uniform electric field on the absorption bands
in molecular crystals is investigated theoretically
and is generalized so that the method of determi-
ning the excited state dipole moment of a mole-
cule proposed by Hochstrasser ef al. may be
applied even to the cases where the Davydov
effect is not negligible, The change in intermo-
lecular interaction and the induced polarization
due to the presence of an electic field is, how-
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ever, assumed to be small and not much attention
will be paid to this. I! In order to formulate the
problem mathematically we adopt the molecular
exciton theory which has been extensively de-
veloped by Davydov, Agranovitch, Craig, and
others. 1> Mathematical treatment of the problem
described in this paper is apparently similar to
that of Agranovitch;!® however, there is an
obvious distinction between the latter and ours

since the erystal under consideration here is sub-

ject to the influence of an electric field. The .

theory in this paper is developed with tacit as
sumption of the rigid lattice and no intramolecu.
far vibration. However, the same formalism can
easily he extended to include the vibronic

states, 1

2. Derivation of the Second-Quantized
Crystal Hamiltonian

Consider a pure molecular crystal with two or
more molecules in a unit cell. In the presence
of an externally applied, uniform electric field,
¢, the electronic part of the Hamiltonian for

such a crystal as described above may be written

H=H+V (2-1)

where Hj is the sum of electronic Hamiltonian
for individual molecules in the presence of electric
field, ¢, and V denotes the sum of intermolecu-
far interactions in the crystal. For convenience
let us denote the molecular site at the a-th site
of n-th cell by the symbol (na). Then we may
rewrite Hy, and V explicitly into

Hg=§h,,,=H0‘°’ +H,®@ (2-2)
and

V=g 5 Vae o (2-3)
where

Hy=Sh 0 (2-4a)

and

H®P =~ e (2-45)

In the above expressions A, and AY. represent
the electronic Hamiltonian for an isclated mole-
cule located at the site {ra) in the presence and
ahsence of &, respectively, Vi, mg stands for
the intermolecular interaction between the mo
lecule at the site (#a) and that at the site (mj)},
and g,, denotes the (electric) dipole moment
operator for the molecule at the site (rar). Also,
the prime on the summation symbolngg means
excluding the term for which ne=mg from the
indicated summation,

Let the eigenfunctions of k., and 2%2 be ex-
pressed by the functions ¢4, and ¢f., respectively,
and the corresponding energy eigenvalues by
El, and €/.. Then we may write

hna ﬁazEufw 9'5{": (2_5)
h{nua)r {EJ{«=€£« @{a (2_6)

with f representing the appropriate quantum
number (s)for an electronic state.

If we designate the creation and annihilation
operator for the molecular state ¢ by aff and
al,, respectively, we may rewrite the Hamilton-
ian (2-1) in terms of a/; and aL as follows:!®

H:Z ;; E.{a a{a_ a{a

l 7 i I+ .9+
+ 2 #‘g‘ﬁ {Z?;’;,Vna.mﬁ(fg? fg) Qpa Qs

Xats ahe (2-7)

where!s
Vaens(f8s £8)= (075085 Vaams ¢he ¢l dt
-exchange terms, (2-8)

The operators e/ and &, are known to be the
so~called “Pauli operators” and satisfy the follow-
ing commutation relations:
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(@l alt)=0 unless f=g and ﬂa=mﬁ,
fa{a; aﬂ?.‘}] = [afl_nl"r az-t‘»] =0!

.and
[a{a, aﬁ:] + =1 (2_*9)

‘They are known also to satisfy the following

important sum rules:

;ai}'ﬂ,’:a =1 (2_103)
~and
T 5 al=oN, (2-108)

where N is the number of unit cells in the
crystal and ¢ denotes the number of molecules
-contained in a unit cell.

In the molecular exciton theory we use the
(localized) electronic exciton creation and annihi-
lation operator, B and Bf, instead of aff and
al,. According to Agranovitch BL and Bf, can
be defined in terms of aff and o/, as follows:

0+ F

Bli=aly a% and BL=dali af, (2-11)

where the superseript 0§ represents the elec-
tronic ground state and f the excited state, The
occu pation numbers for the state f and 0,
N (f) and N,,(0), respectively, are given by

Nw(f)=ali af, and N,,(0) =2l al,
(2-12)

It is obvious that N, (f) and N,,(0) are equal
to either I or 0, and if N, (f)=1, N,.(F) for
some other state f’ is zero. Hence, it is always

true that
Nua(f) Noe0}=0

for the state f other than the ground state,
Therefore,
Bl; Bl.=alf a4, & al
:Nua(f) []—_Nua(o)]
=N ()

=&l ala (2-14)

.Accordingly, Bl and B also satisfy the sum
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risles

;B{: BL=1 (2-15a)

and
2; B} BL=aN.

It can also be shown that the statistical consider-
ations” lead us to the conclusion that BYf and

B, approximately satisfy the following commu-

tation rules:

(BL, Bi=1, (2-164)

(B, B =(Bi}, Biy)=0, (2-168)
and
(BZ, BS5) =0 unless na=mpB and f=g.
(2-160)

That is, in this sense Bf and Bf, are the Bose
operators. In Appendix I it is shown that the
Hamiltonian (2-7) may bervewritten in terms of

Bl and B into the following form:
H=E.+3; T 4% Bif BL
re f{=1)
+ 3 TS Vi ws(f0: Of) (B +BL)
L ¢5)
x (B +8 (21D

" where

Ey=celectronic ground state energy for the en
tive crystal in the presence of electric field,

:;[E?::"F% %’ L’na,m,ﬁ (00?00) } (2‘18)

“and

A‘{': {ENJ;-_EJ?U}
T AV a3 (L 031 0) =V s s (00:00)}.
| (2-19)

The second part in the expression (2-19) may
be regarded as the change in van der Waals
interactions for the crystal on eletronic excitation
of a single molecule in the presence of an elec-
tric field. The apparent form of the derived
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crystal Hamiltonian (2-17) may seem to resemble
those used by other people,® but unlike the
latter the effect of an electric field is implicitly
incorporated into the expression (2-17) since we
are working on the basis of ¢% representation,

not on the pf representation,

3. Diagonalization of the Crystal
Hamiltonian
In order to find the energy eigenvalues for
elementary excitation we have to diagonalize the
- Hamiltonian (2-17).
Tyablikov’s method of diagonalization of Hamil-

To do so, we adopt the

tonian of the quadratic form'®?® and proceed as
follows. Suppose that by a canonical transform:
ation the Hamiltonian can be converted into the
following form in terms of a set of new Bose
operators &, and &,:

H=got SELLS.. (3-1)

Then, the equations of motion for the operators
& and &, may be written in the form

L =it &) =B (5-24)

and

Ag=it )=

~ikg,

(3-28)

where we have made use of the following pro-
perties of £ and &,:

{1 for p==p'

0 otherwise

(&, E)=d, = (3-3a)

and
[6;;3 5 = ‘.; a4 E J ‘“’ (3—36)

Now, we assume that Bf and BJ can be

written in terms &7 and &, as follows:

Blr =T {ui (na, f)80 + vilna, f)E)
(3-4a)

and

Bi=%lu, (e, ))E vk (ne, f)E])  (3-48)

Using the Hamiltonian (2-17), one can obtain -
the equations of motion for the operator Bl in.
the following form:
Bii=i(H, BJ1=i{dl Bis
+3 5 Vaams (05 0f) (Bri + Bui)
(3-5)

A
dit

Substitution of (3-4a) into Eq. (3-5) and wuse:

of Fas. (3-2a) and (3-28) yield

A-J{ 2% (nee, )€, S —Eu(na, £}
=5 {84194 ut(naf)

2

+‘_&UIZ Vm:r m-B(fO Of‘) (a’;(mﬁ,f’)
+1«'ﬂ*(m|6’ f))] +$y(d U#(ﬂa,f)
+3 5 Vaaons (f0; 0F) (u,(mB,f")

+v,‘(m,o NN

since &, and &7 are linearly independent of each.
other, coefficients of these operators in Eq. (3-6)
should identically vanishing for all g Thus.
we obtain

(3-6):

(Eu AW) y;.r (ﬂa f) - (E +A )v,u (mt f) ’
—-Z’ L Vna mp (f0; Gf) (u. {(mp, iif]
+v,; (m:S . (3-7)

We impose the following normalization con™-
dition on the solutions z.(an,f) and v,(na, f)..

5 % )l (nen f ) —, (ne f)

v¥ (e, f)} =1. (3-8)

Then Eq. (3-7) along with (3-8) uniquely de
termines the solutions «,(na, f) and v.(ne,f).
Also, substituting (3-42) and (3-48) into (2-
162) through (2~16¢) and making use of the
relations (3-3¢) and (3-3b)
another important orthonormality conditions:

we can obtain

Z {“y (HCY, )ﬂ; (”J‘S)f’) —'—U‘, (nalf)
vl (mf, )} =OumlasOr s (3-9a)
and
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Sluy(na, v (mp, 1) —vi(ne, f)
xu,{mpP, £}=0.

In Appendix II we derive some other useful
orthogonality relations for u,(na,f) and
v, (na, f) and it will be shown that the eigenvalues
for Eq. (3-7),

For simplicity, let

d,(ne, £)=2 w,(na, fY+ v,(na,f).

We may rewrite LEq. (3-7) into the following
form:

v, (nat, f)=—-2

(3-9%)

E,, are real and positive.

Eemde o (naf).

E + Af (3_10)

It then foliows from the definition of #,(na,f)
and Eq. (3-7) that

Ex—

2,6, £)=(1—F 2 o f)

24]1
or =B 4 g )

w4,
wuna, ) =EEE22 3 ua f).

(3-11)

Substituting (3-11) into (3-7), we obtain

(Ei—20) 8, (na.f)
=244 5 3 Veamp (F0: OF) 2,(mB.f7)
(3-12)

In Appendix III it is shown that if the relation-
ship (3~7} (or (3-12)) holds, then the Hamil
tonian (2-17) is diagonalized into the following
form:

HZE _‘Sﬂ p(:...d J{:lo}!at'p(ﬂa‘f) EE)

+ ;E__qc‘:_u e (3-13)

4. Determination of the Excitation
Energy E,.

In order to determine the elementary excitation
(that is, molecular exciton in the presence of an
electric field) energy, E,, we must solve Eq.
(3-12) with respect to the coefficients #,(net, f).
Since translational symmetry of the crystal

remains intact despite the presence of a uniform
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electric field &, we look for the solution of the
following form:

i, (na, f) = (No) 125 (pe, f ) exp(ik-rs),
(4-1

where % is the appropriate wave vector and r,,

is the position vector for the site (na) with re.

spect to an arbitrarily chosen origin.
Subsitution of {4-1) into (3-12) gives us

(Ei—dAD (e, f)

=241, EE;Q)VM,M (f0: Qf)ei® TapTned

X i (1, 7). (4-2)
It is difhcule to obtain the solutions by solving
Eq. (4-2) directly because the factor Vi, ms(£0;
0f’) interconnects two different (molecular) elec
tronic states £ and f’. However, in order to
predict the position of a band center we may
restrict ourselves to the case for which f=f",
In other words, to a good aproximation we may
exclude all other terms except the term repre.
senting the intermolecular resonance interaction,
Vawmg(f0; 0fF). Then, Eq. (4-2) is further
simplified to

(E,fzz_‘ﬁg) & (u, f)
:24'{; E;V““.m‘g(fo;of)efk‘ (T ap=Taa)
X a'sk ()u!f)-

In molecular crystals where intermolecular

(4-3)

interactions are weak energies for the exciton
states ‘are” not} much different from these for
the corresponding electronic states of a single
molecule in the crystal, and therefore one may
replace the term (E,2—4%5) by 244 (E,—45).

Hence

(B, — ALy (u, 1)
=53 Ve ms (030 fef* Tosad i (p, £
(4-4)

The approximation,we have just adopted is equi-
valent to the so-called Heitler-London approxi-
mation. 2! For convenience, let us introduce two
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quantities called the equivalent sum and the in-

equivalent sum designated by LZ (%) and L& (K),
respectively, which are defined as below:

Litk) =5 Viema (£ 00 et Toantoo
(4-5a)

and

LI (B) =0V o ms(FO0f Yeik Con=Tex? (4-58)

Since EZ, €, 4f&, LL(K), and L&) are in-
dependent of the index # which represents a
particular unit cell, we may drop such index
from the above-mentioned guantities without any
ambiguity. Thus Eq. (4-4) may be reexpressed
in terms of (4-54) and (4-55) as follows:

(E,— 4 —LLR)) (e f)
=T LB (1, f). (a=1, 2, o)
o (4-6)

E, can be determined by solving the secular
equation
det ({E,—df—Li.(k)} 6,5—LEs(Kk)I=0
(@=1, 2,+ 6; B=1, 2,- o) 47

Eq. (4-7), in general, yields ¢ solutions for E,,
which correspond to energy levels of the ¢ ex-
citon bands in the presence of an electric field.
The oscillator strength of the photon induced
transition from the ground state to the state of

E, is

£
Fe(yy= _g%f’-‘?g_ by fzgo) (e 42)

i, (na, f ) emi@ Taa| 2 (4-8)
where Q is the propagation vector of the pho-
ton, eq the polarization vector of the photon
and gfi=16¥ p,.60ds is the transition dipole.

Actuval application of Eq. (4-6) to molecular
crystals requires knowledge of the crystal struct-
ure data as well as experimental conditions
such as the polarization plane and direction of

propagation vector of the light wave used, and we

P,

i

cannot go further beyond this stage. However,
for illustration of the theory developed thus far
let us consider the case where two molecules are
contained in a unit cell. In this case the secular
equation (4-7) becomes

I Eﬂ‘—A{_Lafc (k)
| — LL(K)

—L{:(k)
E~M4i—Lik) |~
(4-9).

The two solutions for E, of the above equation
are given by

E$ (k) =3 (4i+ B+ LL o) + LL(R) )

5 (M~ L (k) — LE ()2
+4|LL(E) |2 Ve 4-10)
where we have noted the relation

Li (k) =LL(k)*

The solutions represented by (4-10) give two
exciton bands originating from the f~th electronic
state of an isolated molecule.

5. Stark Effeet and Davydov Splitting

In order to discuss the Davydov splitting and
the Stark effect in molecular crystals let us con-
sider the case where two molecules are contained
in a unit cell. The two energy levels given by
(4-10) would be degenerate if it were not for
either intermolecular interaction or an externally
applied electric field or both, and the absorption
line corresponding to the transitions to such
levels {from the crystal ground state) would
constitute a singlet. Howewer, in actual crystal
spectra the would-be singlet will appear as a
doublet due to the presence of afore-mentioned
intermolecular interaction and an electric field,
and such spectral splitting can in turn be used to
estimate the effect of intermolecular interactions
and/or an externally applied field. One of the
difficult problems here is that an externally ap-
plied field itself may influence indirectly the inter-

Journal of the Korean Chemical Society
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molecular interactions via reorientation of perma-
nent dipole moments and induced polarization
-and thus affected intermolecular interactions them-
selves can in turn alter the strength of field
actually “felt” by molecules. This is the kind
of difficulty which is essential to all the many
body problems and must be treated in a self-con-
sistent manner. In order to avoid such a diffir
culty we take only the direct interaction between
the molecular dipole moment and an external
field into consideration in this paper assuming
intuitively that effect of the field on intermolecu-
lar interactions, particularly for weak transitions
in molecular crystals, may be ignored. However
in a paper subsequent to this we intend to de-
velop a methad of estimating the magnitude of
such effect for the crystals where intermolecular
interactions are of appreciable magnitude.

Taking the difference of two energy levels
given by (4-10), we may write
AE(RY=E;* (k) —E; (k)
= ({dh— A5+ L. (k) — LL:(K))?
+4| L (k) |12 (5-1)

In the exciton spectroscopy the selection rule
is k=@, ?® where @ is the propagation vector of
in the
region of electromagnetic spectrum which we

incident electromagnetic wave, Since
are concerned with here |Q|=0,%* we may re
k| =0. However,
when using such selection rule, one must be
careful because L{.(k) and L{;(k) are nonana
Iytic in the vicinity of A=0.*?® In other words

present the selection rule by

there is no unique exciton band defined at =0,
the center of Brillouin zone. If we, however,
specify the direction of & near k==0, we can
get out of this trouble. For an arbitrary direction
of k& (or @) LI (k) is not in general equal to
Lis(k), and Eq. (5-1) cannot be further simplifi-
ed and comparison of an experimentaily measur-

ed splitting with theoretically calculated one

Vol. 19, No. 5, 1975

will become a complicated matter. However, if
we choose the direction of incident light wave
such that its propagation vector be either parallel
or perpendicular to the plane of symmetry of
the crystal, it may be shown that®
LL(B)=L{pk).
Under these cenditions the spectral splitting is
given by
AEF(0)= ({&—L20)? +4|L{:(0) D)7
(5-2)
Since the change in the van der Waals energy
(2-19)) has keen as-
sumed to be affected very little by the presence of

{the second part of Eq.

an external field ¢, we may approximate 4{—4}
by (E{—E})—(E{—E}) and the latter can be"
estimated using the perturbation theory.

Application of the first-order perturbation theo
ry to Egs. (2-5) and (2-6) gives us

Ef—El=(f—e)—dp’-e (5-3a)
and
BV (e —e]) — datloe (5~38)
where
pr— {0) p(oj
= §ol*p ol dr~Jot* u,0tdr (5~4a)
and
gl = 57— g
=fol*useh dr—[e* ppet dr. (5-48)

Auh represents the vectorial difference between?
the dipole moment for the f~th (excited) state
and that fer the ground state in the molecule
with orientation @ and 4gf means the same
thing fer the molecule with orientation 8.

For pure molecular crystals ¢/ =€/, ¢i=¢}, and
VApli =4l =4uf since all the molecules in
the crystal are of the same kind. Hence

A — M= (dpt—BpT) ¢
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=du/ (cos Bg—cos G,)¢ (5-5)

where 8, and 8; are angles which Jgf and dp}
make with the electric field &, respectively. If
the molecular and crystal structure and the di-
rection of ¢ relative to the crystal axes are known
one can calculate the term (cos fs—cos 8,).
Substituting {5-5) into Eq. (5-2}), we obtain
the following expression rtepresenting the ob-
served spectral splitting:

AE#(0) = ({dp/ (cos #5—cos 6,)s}?

+4i L (0 [AhF (5-6)

If we measure the spectral splittings for various
strengths and directions of & while the propa-
gation vector of incident light wave is made to be
either parallel or perpendicular to the plane of
symmetry of the crystal, we can obtain the
values for duf. If we plot 4E;(0) against du/
(cos f5—cos 6,)e, we will obtain a hyperbolic
curve as shown in the Fig. 1 provided thate is
not too large.

In the limit that e=0 we obtain 2{L%(0)[for
AdEf(0), which is the well-known Davydov
splitting. On the other hand if the Davydov
splitting 2] L7;(0) | is negligibly small, Eq. (5-6)
reduces to the relation used by Hochstrasser et
al. Thus our formula for the spectral splitting

2ILE 00N

lapf(cos 83~ cos B¢l

0

Fig. 1. Plot of 4E(0) against |du/ (cos #g—cos 8,¢|
(not drawn to scale. The slope of asymptotic
line for the hyperbola is 1.)

[Eq. (5-6)) can be considered to represent the
combined effect of external field and intermo-
lecular resonance interactions correctly. Though
the type of experiment described here has yet to-
be performed, the results obtained by Hochstra-
sser and Lin* provide some evidences that the:
formula (5-6) is indeed reasonable.

6. Conclusions and Discussions

We have developed here a theory to explain
the Stark effect in molecular exciton states for
the crystals containing two or more molecules.
in a unit cell to the extent that the theory can
be applied to the case where the Davydov
splitting is not negligible compared to the Stark.
splitting under the assumption that the externally
applied electric field is low enough for the change-
in intermolecular interactions to be ignored. The
result derived for the crystals containing twao.
molecules in a unit cell correctly shows the com®
bined effect of both electric fieled and inter-
molecular resonance interactions, and this in turn
can be used to estimate the values for vectorial
difference between the dipole moment for the-
excited state and that for the ground state. There
are two important points we have to mention in
connection with the experiment described here.
The first is that the measured quantity Jgf itself
is not necessarily equal to the difference between
the magnitude of excited state dipole moment
and that of the ground state dipole moment since
Jduf is merely the magnitude of vectorial differ-
ence between these two dipole moments, Only
when the direction of molecular dipole moment
remains unchanged on electronic excitation, we
can regard Jpf as the difference between the
magnitude of excited state dipole moment and
that of the ground state dipole
second is that in the experiment described here
the absolute sign for Ju/ cannot he determined.
In order to determine the magnitude of dipole

moment. The

Jourval of the Koreank Chemical Society
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moment for an excited state onec must obtain the
additional information from some other sources
regarding whether the magnitude of dipole mo-
ment increases or decreases on electronic exci-
tation in a molecule. There are some indications
that the magnitude of dipole moment in mole-
cules is likely to decrease on electronic exci-
tation. *+* The theory developed here can easily
be extended to the case where there are more
than two molecules except that the calculations
involved are more complicated than in the case
of two molecules per unit cell. The observed
spectral splitting plotted against the applied field
strength is expected to show a hyperbolic curve
provided that the Davydov splitting is not
negligibly small and the applied field is not too
strong. If we can identify the factor group to
which the unit cell of the crystal under consider-
ation does belong, the actual calculation will be
greatly facilitated. Since we did not take into
consideration the electron spins and interactions
between them, the theory developed here may
be applied only to the case of excited singlet
states. Regarding extension of the theory to tri
plet states we intend to publish elsewhere.

Appendix
By making use of the various properties of
operators af’, al, Bl , and B the first term in
the Hamiltonian(2~7) may be rewritten as foll-
ows: '
Y E! ai&" al

g.-...—l

F
—"ﬁ E. av; an*E Z EL ol al
_T Em'\]. V‘ an« anﬂ)_!_.c.-_f;...-» E{.: an(" a{a
—E5L) ai. al.

—Z E.i- FE S (EL
—-Z EL, +T “ (E,Z E) Bl Bl

w7y

(AI-1)

Since the concentration of excited molecules is
very low, we may ignore the interaction be-
tween two excited molecules. Thus among the

second term in the Hamiltonian (2-7) we are
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left only with terms involving V. ms(f0: £/0).
Voaems(00: ), Vg ms(£0:0f7) and
Vm‘mﬁ (Of,f!(:l)

In this approximation the second term of the
Hamiltonian (2-7) may be shown to take the
form

3 L; Vs (00300)

dﬂﬁ aﬁr:l' am,ﬁ

+5 ,,Zm;f?_” we.mg(S 03 F0) ald al; al, aks
+—1- E L"na mﬁ(Of 0f) a aﬁ, am d’;.’:.s

Ll S

se.ms f

|_|

+i er \Z#:n),%o}r” ms(fF/100) @kl ans™ abe ans

+%..2§; 3 Ve mdO0 £ W2 a5 ale ol
t3 2 23 Vaend FO30S lali o ale aly
omh f%onz: o wa.adl0 S5 f "Olans ali aia avs
(AI-2)

+

N|b—-l

We may rewrite (AI-2) in terms of Bff and BL

as follows:

2. (00;00) (1— E B“‘B
x (53 BLBL)

_]; Aull S S
+ 9 nﬂ{;‘ﬁ s :w mﬂ(fo fO)Bua B

x(1—-2 B,,{f B.f;)

£F0)

+1 5 5 Vi 0F:06)
X (1~ Bi*Bl)Bl: Bl

+5 5 33 Vonmal £F:00) BL* BL;

nam;

+1 57 Y Viems ©0:fF)BL

2wmrxf Freen

+E TS Vauas(£0:0) Bl BL:

rr.m3 f /0

_1_ 5 i R
5.5 5 Vaens0f '3 £0) BL BL

3BV

=

Terms involving the operators Bf* BfB/:"Bf,
etc. are ignored since these terms tepresent the
exciton-exciton collision terms which are of little
importance when the concentration of excited
molecules is low as in our case.

Assuming the states ¢».’s are nondegenerate,
we may take ¢7 as real functions. Then

Vnu.mﬂ(fozf(]) :j]?ﬁn{;lz“&?ﬂﬁ[z Vua.m,ﬂ dv
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—exchange terms,

Vua, mﬁ(ff’ *00) = Vﬂﬂ.m_i(oo:fff)

= Vaa,mp (0f7:f0) = Vm.m,s(fo:ﬂf’), ete.
Hence the second term of the Hamiltonian(2-7)
may be simplified to

3 T Vi ma (00300)

2
— Z; 53, Vas.ms(00:00) BL Bl
+W§:§, 2..! Vﬂa mﬁ(fo fo) B{:‘ B{rx

+“-é { _.5 Ve ms(F0:05") (BL + B,
nxmd f, f(x0;
X (BL5™+BL). (AI-3)

Collecting (AI-1) and (AI-3), we obtain the
Hamiltonian (2-17).

Appendix II
First we prove that the eigenvalues of Eq. (3
=7) are real and positive. From the normalization

condition (3-8} we have

E E \_| \_‘ {“ (”a f)“u {?10.’, f}

v, ne, { v, e, £))
= % (3l )12+ 8 v, (nae ) 1)

X% Viewme (FO:0F) (nat, £)
#,(m3, _F') (AIl-1)

where we have used Eq. (3-7). Since the right-
hand side of (AII-1) is real, E, is also real
Also, as shown by Tyablikov,® substitutions
(g, v)—=(* «*) and E—>—E' in Eq (3-7)
will yield another set of equations with eigen—
values E',=—E;
condition in this case should be written as

}; Eﬁq ' A fre, Y (na, f)
—v,(na, f) v'% (na, f)) =—6,,.

however, the normalization

Hence, the selzction of the solutions correspond-
ing to E>>0 and the normalization condition
(3-8) automatically excludes the solutions with
EQ.

Now we prove that

Py HZQO) {u (ne, flul (na, f)

~v,(na, f)el (na,f)}=o,, (AIl-2)

-

and

NQE},(;&) {H,u(ﬂ'aaf)v,u’ (ﬂa,f)
‘_ﬂ#(na!f) ﬂp'(mvf)} =O-

From (3-7)

E.U L:fgﬂ){ﬂp(ﬂa,f)u‘?

=, (na, vk (na, f))
=2 Zj A{«{uﬂ(ﬂa,f)uf» (na, f )

+z, (na: f)v* (nea, f)}—l—):’ ﬂim
mx mé(fo ofr)“p(mﬁ f’)ﬂ'* [’?a f) (AII 4)

(AlIl-3)

(ne. f)

Interchanging x and g’ and complex-con-

jugating in (AIl-4), we have

E, %I,Z:]D)fﬂy(fia,f)ﬂi (ﬂa',f)—v#(;zar, )
o (na, f)) ::Z: Sﬂ J;’;[ﬁ (ne, fHuf (no, f)
+7 (rra.f).;* (na f)}” mf fv;o

d ﬂa.m,i(f[] 20_}”)31 (mp,

Y lne, ). (A11-5)
Subtracting (AIl-5) from (.1II-4), we obiuin

(E.—E, }Z} {up(r:a,f\u (no:,f)
— (mr f)v"(n{r, = (ATI-6)

On the other hand from (3-7) we may write
another identity as follows:

E, J:-E"ﬂ';o} {u.(na, Fo, (na, f)

—v,(nc, fuy (na, £} = §f<§}d,f; {u.(na, f)
velna, f) +v.lna, fru, (na, f))}

+ F V)m meC FO0) ik, (mp, f)

w s
z:_u(na’ f) (AIl-7)
Interchanging g and ¢', we obtain
—Ey I 5 o, f) v, f)—v,(ne, f)

u,(na, fi=12 Z: Am {ue(na, v, (na, f)
+3, (m’f,f)if (ﬂa f)}-‘- E’ }Z“l_n

o b FOOF WA 5, f7) Ju (na’ 5. (A7,

we lhove

Subtracting (AMI-8) from (AH-7),

(E.~+E, )E Eq Vaine, Flo,(re, f)
(ng, f)a'ﬂ (ner, £)} =0 (ALI-9)

Egs. (AI1-6) and (AII-9) prove (4II-2) and
(AII-3), respectively.

Journal of the Korean Chemical Seciety



577 Exciton jRRel A Stark 2| #5 15

Appendix il
By direct substitution of (3-4a) and (3-48)
into (2-17) and use of the commutation rules
(3~34) and (3-3k) we obtain

H"'EO ' ..- g,,r: §:$,u =+ E B## ':;.htslr

- Y‘ C E.a G’ TZ: D,u,u spé,u y (AIlI-1}

where
2:. Blau,* (net, fu,(na, f)

=%

50,2 Vaems(FO0)ET (ner, f)
o,
u;_ _Z L AQUF(M,f)‘U% (Ha9f)

na f{#0)
2 MZM,’ .Z me mﬁ(ﬂ] Of!)u,ec{na'f)
g (mpP '),
C,M—Y‘ \" J.«u;. (ne, v (na, f)

+ L Z' Voa.ma{ SO0 (ner, f)

2,,«»-,:_!;( 20)

i (mp, f'),

_1_
2,
i,

and
D, = dhy,(ne, v, (na, )

FGEQ)
L% ' B Viems (0301 )ity (nt, £)

ou, w3 [ f(#0}

@, (mB, f').
Using Eq. (AI1-7), we can essily confirm that

C:r.u': '_C#’w Cﬂﬂzo
Dypr=~Dyps Dypp=0.

Hence, terms involving &%6% and 2,5, vanish.
g WSu

Moreover

E Ap,_g 5; Spt .+ E Bm; f,ue,ne
= E Ay,u €¢‘;p + EB;.:# (6;.!;:5 +$.ﬂ s )
- E (AI'P +Bﬂ ﬂ)é ¥ -+ gBFF

Since from (AIl-4)
Ap +B.“ g
—E Z ity (nex, fluy (na, f)

+Ug*(m N laa, £} ,
ang fg V,.“.(f(} oy

@y (mB, f1)= E Oue
and from (I11-94)
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(na, f)

S, (na, )32 (mp, £

:g (u, (nat, £} +v,(na, f)) (u?
+of (mB, 1)}

—22 v, {(na, f)t#*(??.’.p 1
+2§:Ua(??d‘f)fh*(m5 bip)

.,22 t&',f (m§, v, (na, )

(mB, f1)

we have
E A,u;(. u‘s,u -’-E B,Ll‘a'_hc
—-EE@ZE# E (E Z] lz.(na, £)1%).

Thus the diagonalized form of the Hamiltoniar
{3-13) has been justified,
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