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ABSTRACT, An idealized linear collision model has been employed to calculate the reaction pro.

babilities for the three-atom rearrangement reaction A+B—C—A—B+C. Potential encrgy surface

used is also a highly idealized one with constant values. Numerical results were obtained for the

systera in which the atomic masses of all three atoms are the same. Potentials were varied to see

the effect of the magnitude of the opposing potential barrier on the reaction probabilities.

Results

obtained were compared with those obtained using different models.

1. INTRODUCTION

The reactive scattering of an atom by a diato-
mic molecule is of great importance in theoreti-
cal chemical dvnamics. A model that is often
used to study this problem 1is to restrict the
atoms to lie on a nonrotating line throughout
the collision and consider that the system is elec.
tronically adiabatic.

This model has extensively been studied both
classically! and quantum mechanically? in relation
with H+H, reaction. The studies performed so
far can be classified into two major categories
depending on the type of the potential evergy
surface used. The first class of studies are those
which use one of the realistic potential evergy
surfaces such as Karplus®, London-Eyring-
Polanyi* or London-Eyring-Polanyi-Sato® type.
Because of the extreme mathematical difficulties
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sountered in this type of study, both classical
and guantum mechanical calculations have been
possible only with many simplifving approxima.
tions and also with the help of electronic com-
puters.

The second type of studies are those which
use a very idealized potential energy surface such
.as shown in Fig. 1 by heavy lines. The L~shap-
ed channels are bound by infinite potential

walls, and potentials inside the channels are
-constants. Even though this type of idealized
potential energy surface is too naive to give
practically useful results, it enables one to per-
form a relatively less laborious but rigorous
analytical calculation, thus making it possible
to study the geneeal trends, and effects of
atomic masses, heights of the paotential barrier,
and the initial vibriatonal energy of a diatomic

moleculenon the reaction probabilities,

Hulbert and Hirschielder® wer
study this idealized problem, and the particular

the first to

case they stud:2d was a=99°, Le., the case of
a scattering center with infinite mass, with V]
=V=Vii=0. Recently Robiuson™ showed that
the basis set of wave functions used by them
was incomplete for a set of resonance energies
for the same problem. Dion, Milleur, and Hir.
schfelder® reexamined their resulis using Robin.
son’s corrected basis szt and obtained the quan.
tum mechanical reaction probability at one parti-
cular value of the total energy of the system.
Their result is in good agreement with that of
Tang and his coworkers, * Locker and Wilson'?
also studied the same problem quantum mechani.
cally for the system of DN colliding with H, D,
and T. The system with potential barrier, i. e.,
V>0, was studied by Rubin®! and Shin!? for
a=9°" and «=45", respectively. All works
mentioed above employed quantum mechanical
:approach except the last two cases.

In 1959 Jepsen and Hirschfelder’3 further in-
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Fig. 1. Potential energy surface.

troduced a rather drastic simplification to avoid a
difficulty that some of the particles which enter
the diamond-shaped reaction region remain there
too long, thus making the calculation very tedi-
ous. They take the lip of the
perpendicular to the outside walls of the region

reaction region

of motion to give the potsntial energy “surface
shown in Figz. 1 by dotted lines. .

They studied the @ =60° case (i e.,
of three atoms are equal) and compared their
resuits with those of Wall, Mazur, and Hiller’s %,

masses

The agreement was not good except possibly at
very high energy region,

The simplification introduced by Jepsen and
Hirschlelder i3 physieally too wunrealistic and
cause some undesirable features which will be
discussed in other section.

The purpose of this study is to remove the
Jepsen-Hirschfelder modification and study the
explicit dependence of the reaction probability
on the height of the potential, and effect of the
initial vibrational energy of the diatomic mole-
cule in overcoming the potential barrier. it is
also hoped that comparison with the quantum
mechanieal study, which will be carried out
later, will add some light on the applicability of
classical mechanics in the chemical reaction pro-
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bilems.

2. MODEL

Collision Model. In this study we use a
linear collision model which is shown in Fig. 2.
Initially atom A impinges on a diatomic mole-
cule BC; after collision, either particle Ais re-
flected without achieving a
chemical

rearrangement, of
reaction occurs yielding a new diato-
mic molucule AB and the new free atom C
moving away.

If we skew the coordinates r; and r» as shown
in Fig. 3, then

ri=z~—{cot @)y, ¢}
and
(g ey @
i- f % T
A 8 ¢

Fig. 2. Collision model.

2

Fig. 3. Skewed coordination,

where
.
z=r + m:-:fmbrz’ ()
and
yzmb-ll—mimbmc (me;:?ls'}‘mr) ]%?'z-

The new coordinate x is the distance of atom.
A from the center of mass of the molecule B-C;
and ¥ is proportional to the amplitude of the-
vibration of molecule B-C. Therefore, the trans-.
lational enrrgy of the system(E,) manifests as.
the z-component kinetic energy in the new coor-
dinate system, and the vibrational energy of
the diatomic molecule(E,) as the y-component
kinetic energy. In the new coordinate system,

the kinetic 2nergy expression becomes
T=4u(2?+y%)

where p=m,(my+m,){ M, the reduced mass.
of the system. Af is the total mass of the system,

le,
M=m,+ms+m,.

Therefore, the collinear motion of three parti-
cles is equivalent to the motion of a fictitious
particle with mass g in the two-dimensional
z-y surface. The skewed angle a in Fig. 3 is.
a function of masses. For example, for a system
of equal masses as in H+ H,=H,+ H reaction,
a=60°,

Potential Energy Surface Medel. To compl-
ete the specification of the problem an idealized
potential energy function is introduced. The-
reaction path is divided into three regions as.
shown in Fig. 1

Region I represents the reactants particles A+
Journal of the Korean Chemical Society:
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BC; region III the rearranged system AB+C;
and region II the interaction of three particles
A--B-+C. Since we are dealing with the pro-
blem of scattering of an atom by a diatomic
molecule, the region IV which corresponds to
three free atoms A, B, and C is not available
for the reaction, and is effectively eliminated by
putting it at an infinite potential. Inside the
L-shaped channel, the potential is V;, Vy, and
Vir in regions I, II, and III, respectively.

The outer boundary lines oz and ob represent
the ahrd-sphere contacts of B and C, and A
and B, respectively, At the point o, all three
atoms are in hard-sphere contact.

Jepsen-Hirschfelder Potential Model. Becau.
se many works have been done by use of J-H
potential energy surface, it will be discussed
briefly. Essentially their model is same as ours
except the fact that the lips of the diamond-
shaped reaction region ate perpendicular to the
outside boundary lines oa and ob as shown in
Fig. 1. This simplification has an advantage
that it makes the classical calculation of the
reaction probability very easy. In doing so, how-
ever, there arises several problems,

1. Except at «=90° case for which there is
no differel::ce between two models, there always
is a substantial increase in the area of the reac.
tion region in J-H potential. Obviously the shar-
per the skewed angle & becomes, the larger the
additional area is. Ratio of the additional area
to the origianl reaction area is given by cos a.

2. As mentioned before, the vibrational ener-
gy of the diatomic molecule (E,) manifests as
the y-component of the kinetic energy of the
fictitious particle, In the simplified J-H model
this component of the kinetic energy is always
parallel to the boundary line between hte reac.
tants region and the reaction region. Hence, the
vibrational energy can never be utilized for cros-
sing the potential barrier. Also, the vibrational-
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translational energy transfer never occurs, Cer-
tainly this is not the real case as shown by Wall
and his coworkers!s,

3. Depending on the geometry and the energy
of the trajectory, there is possibility that some
trajectories that enter the product region can
rearrange again and move back into the reactants.
region, and finally end up in the reactants
region. Physically this redissoctation is possible
when the vibrational energy of the newly form-
In J~H model
this backward rearrangement cannot occur, while:

ed molecule A-B is too great.

in our model it is possible and indeed it occurs.

In our model above shortcomings can be
corrected
qualitiative results can he obtained. For this

and more physically meaningful
study we consider only the a=60° case, since
the general features are expected to be same for:
other cases as long as the skewed angle & is not

equal to 90°.

3. REACTION PROBABILITY

General Behavior of Trajectories. The reac-
tant particles A and B-C start their movement
from a certain point in the reactant region. The
corresponding configuration point (the fictitious
representative particle with the reduced mass)
exhibits a straight line motion, for the potential
is assumed to be constant. Whenever the confi-
guration point hits the boundary lines & and ef
shown in Fig. 4, it will be reflected elastically
from the infinite potential walls. If the diatomic
molecule has no vibrational energy at all, the
trajectory of motion is parallel to the x—axis.
On the other hand, if it has vibrational energy,
the trajectory has an inclination angle ¢.

This angle of inclination between the trajec-
tory and the horizontal direction of motion is.
determined by the relation

tan $=-L-= (—EE%)"I’ (7

x
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Fig. 4. Motion of a trajectory.

Tota! Reflection. When a trajectory hits the
boundary line between two different regions in
which the potentials are not equal, say, the line
between the regicas I and H, it either reflects
back into the region in which it is travelling or
refracts into the neizhboring region. If the kine-
tic energy associated witk the velocity compo-
nent which is perpendicular to the boundary line
(E.) is greater than the potential to be over-
come, the configuration point refracts into the
neighboring region. For this case the normal
velocity compenent 1s reduced by an  amount
related to the e\nerg;}I expended in crossing the
potential barrier. If the kinetic energy component
of the fictitious particle associated with the velo-
city component normal to the boundary line is
less than the opposing potential, the particle is
specularly reflected.

Before crossing the bharrier the kinetic energy
.components which are perpendicular (E.) and

parallel (E,) to the boundary line are expressed

as follows.

E.=F cos® ¢
E,=FE sin® @ (8)

where E is the total kinetic energy, t.e., E=
E+E, and ¢ is the angle of incidence as
shown in Fig. 4.

After crossing the boundary the parallel and

perpendicular components of the kinetic energy,
E. and E, respectively, become

E/=E.—V=E cos® -V, (9)
and

Eﬂ’f_—_E”

where V is the magnitude of the opposing pote-

ntial.

The angle of incidence, &, and the angle of
refraction, ¢, are related to the energy compo-
nents as shown in Eq. 10.

f=tan! ( —g:—) H

1 (10)
¢’ =tan™! [-EEi v )r

Method of Calculation,
caleulation of the reaction probability is straight-

In this madel the

forward, and it can be done by analyzing the
trajectories, If the particle is initially in the
reactants region, but ends up in the products
region and no backward rearrangement occurs,
then the system has reacted to give the products.

If the laws of reflection and refraction are
correctly carried out in Fig. 5, and if there is
no possibility of a backward rearrangement of
the products to give the reactants again. then it
is apparent from the geometry that for a given
total energy all trajectories striking the interface
at points on the line ¢ between ¢ and p will be
refracted back into the reactants region, and
those striking at points between & and p will be
transmitted to the product region, thus achieving
successful rearrangement reaction. Therefore,

the probability of a rearrangement occurring is

Journal of the Korean Chemical Society
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Fig. 5. Typical behavior of trajectories.

=2 an

The backward rearrangement is often possible
when the trajectory enters the products region
but reaches the dg protion of the hard-sphere
repulsion line @g. In this case, depending on
the total energy of the system and the geometry
of the trajctory, some will reflect from the
hard-sphere contact line and reach the interface
between the products and reaction regions. If
the trajectorvy has enough energy to overcome
the barrier, then it refracts into the reaction
region. For this case the reaction probability
must be modified to ilncorppmte this redissccia-
tion.

So, we define two tvpes of reaction probabili-
ty: the first is one that completely ignores the
redissociation, and is designated as P,,. Once
a trajeciory reaches the product region, it is ac-
counted as a successful reaction. The second pro-
bability is one that considers fully the effect of
As a

consequence, P, is less than or equal to, £,

redissociation, and is designated as P,,

The transmission coefficient, #, is defined as

Vol 19, No. 5, 1975

Y
£=p 12y

and this coeficient denotes the fraction of the
trajectories which do not undergo the redissocia-
tion and achieve permanent reaction.

If the trajectory enters the products region and
the first hard-sphere contact of newly formed
A-B molecule occurs beyond the point ¢, then,
the reentry into the reactin region, hence the’

redissociation, isnot possible.

4. NUMERICAL RESULTS

In this study we consider ¢=60° case, 1i.e.,
m,=m,=m,, and three different types of poten.
tials,

Because all three atoms are identical in this
study, the potential energy surface is symmetri-
cal about the r;=#, line. Thus V; is equal to
Vi and their values are set equal to zero. The
value of ¥y is determined by the nature of the
reaction.

The actual values of the potential in region
IT are those which have been used by other
workers? in their simplified J-H medel calculation.

1) Uniform potential:
Vi=Vin=0, Vu=0

a 2) Potential well;

Vi=Vy=0, Vp=—1L5

3) Potential barrier:

Vi=Vy=0, Vp=+2.5

Note that the units of potential need not be
specified as long as they are in energy units and
are consistent with other energy terms. To com-
pare with the result from the quantum mechan-
ical treatment and to see the effectiveress of the
vibrational energy in overcoming the potential
discontinuities, the diatomic molecule B-C hefore
reaction is assumed to he in its ground vibratio-
nal state. The excited vibrational states are igno-
red since nearly all molecules are in their ground
This

vibrational state at rcom temperature.
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assuemption is especially good for small and stiff
molecules. The vibrational eanergy of the di-

Table 1. Reaction probability, unifor mpotential
(Vi=Vy=Vu=0.

Total
kinetic energy(E) Reaction probab ility

a. P, 1N4 Lo
- (Redissociation 3 )
is considered. ) 4.4 3___,:3_(&_1')
3 2y 3(E—1)+1)
4,_“_‘28 \/3(5:1_)-_';_3__
3 v 3E—1)—1
28, VIE-1) -2
3 v3E-1)+1
b P, 4
{Redissociation Ivg 1.0
is ignored.) 1
4 ~. B —————
34 v3(E=D+1
B 3E-1-y3ED
3E—4
B o _VAETD-1
v 3IE-1+1

£BE - RFE

atomic molecule is thus fixed before reaction
and is given the numerical value of unity.
Numerical results of the reaction probabilities
are collected in Table 1 through 3 as a function
of total kinetic energy. They are also plotted

Table 2. Reaction probability, potential well
(Vi=Vin=0, Vy=-1.5).

Total kinetic energy(E) Reaction probability (P..)

1. 0~1. 197 1.0
1.197~3 {1+ 3_«/3(13‘#9#'}
4 4VBE+4+2V3(E-1)
V3E-1D)+1)
V3(E-1)
d~z187 1y 33D __
4«/3E+4+2\/3(E D
3- vIE-1)_
218740 V3E+4+2 y3(E~1)
J3E-1—3 ]
10423088 e
AE—1)~
42308800 3 B3

4V3E+4+2V3E-D

Table 3. Reaction probability,

potential barrier (V=

Vm=0, Vnz +2. 5) .

Total kinetic energy(E)

Reaction probability

‘(Ii{ g,,, . 1. 0~2. 55848 0
edissociation
is considered.) 2. 55848~-2. 68750 0.5
2. 68750~7. 75504 1, 3~y 3(E-1)
4 ABE-12%23(E-1)
7 ___1/3(E-—1)_—‘2_ _
. 75504~9. 92425 S SE=12T2y 5
/3(E—1)-=3 V3(E-1)+3
S 1.5+ vole— D=8 . _v3e—-D+3
9. 92425~11. 2449 2V 3E—1242v3(F—1)  2vV3E—12—2v §(E—1)
5 3y3(E-1)-9 3+v3E-D
14Gmu LR — N
11- 2449~16. 6711 T Y BE- 12 2V(E-T) | 2v3E—12-2y3(E=1)

16. 6711~
b Py, 1~11. 2449
(Redissociation
is ignored. } 11. 2449~16. 6710

16. 6710~ c0

1,  3v3(E-1)-9
T S VIEC12Y2VAESTD)

Same as P,
3, v3{(E-1)—23

34+ 3(E—1)

2T B te /3By

1. v3E-D)-3
2 S RE_ 1212V E-T)

2/3E—12—2y3(E—1}

Journal of the Korean Chemical Society
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.Fig. 7. Reaction probability for potential well
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in Fig. 6, 7, and 8.

Values obtained by Tang and his coworkers
‘using the J-H model are also shown for compa-
rison purpose. Transmission coefficients are also

‘plotted as a function of total kinetic energy in
Fig. 9.

5. DISCUSSION

As shown in Fig. 6, 7, and 8, reaction pro-

abilities far this model are quite different from
Vol. 19, No. 5,1975
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Fig. 9. Transmission coefhcient.

those for Jepsen-Hirschfelder model. The most
distinct feature is the discontinuity in the values
of reaction probabilities,
Uniform Potential. 1. Our result is generally
lower than that of Tang and his coworkers
for small energies, namely for E<4, and is
generally higher than their result for E>>4.
This difference is primarly due to the change in
the boundaty lines,

2. Note the discontinuity at E=4/3. This
particular energy corresponds to the trajectory
which has the inclination angle of 60° which is



302 ' SN - MR

also the skewed angle of the potential energy
surface. In this model, the trajectories which
have ¢ greater than or equal to 60° always hit
the boundary line between the reactants and re-
actions upwardly. If the angle ¢ is less than 60°
the trajectories hit the boundary line downwar.
dly. So there is a sudden change in the reaction
probabilities.

3. At E=28/3, there is also a discontinuity
which is not present in J-H model. This is due
to a characteristic angle ¢ (about 19.1°) which
is peculiar in this model.

4. At E=4 both models bave zero reaction
probability. Their reasons, however, are entirely
different. In J-H model no trajectory with E=
4 can reach the products region. In cur model
half of upward trajectoriers can veach the products
region, but they all are refracted back into the
reactants region. So P, is 0.25 and P, is zero.
This is an example of the backward rearrange-
ment meationed in Section 2.

Potential Well. 1. The reaction probabilities
in this study is always larger than those for
J-H model. This is mainly due to the effec.
tiveness of the downward trajectories. In our
model the downward trajectories always achieve
the rearrangement.

2. Because the potential in the reaction region
is smalier than that for the products and
reactants regions, the trajectories can always
enter the reaction region from the reactants region.
When the trajectories move to the products or
reactants regions from the reaction region, how.
ever, total reflection is possikie at the boundary
lines. The discontinuities at E=2 187 and E=
4.2328 are due to the totel reflections. In J-H
model this total reflection occurs at E=2.5,

3. Again the discontinuity at £E=4/3 can be
accounted for by the sudden change in the be-
havior of the trajectories. That is to say, the
trajectories with E=4/3 are all upward moving

trajectories.

4. Because all downward trajectories always:
succeed in achieving the rearrangement, the
reaction probabilities are always greater than
equal to 0.5.

5. The trajectories which are reflected at the
bounday between the reaction and the products
regions usually undergo several hard-sphere
repulsions inside the reaction region before ulti-
mately refract into either the reactants region or-
the products region.
Potential Barrier.
markedly different for two models.
other things, following differences merit some

Reaction probabilities are

Among

explanation.

1. The minimum energy required for success-
ful rearrangement reaction is 2.55848 in our
model, whereas that in J-H model is 3.5. In
J-H model, the vibrational energy cannot be
used in overcoming the potertia] barrier, so that
the translational energy must be equal to or grea-
ter than the barrier height. Hence, the minim-
um total energy required is the sumn of the bar-
rier height and the vibrational energy, which is
3.5 in this case. In our model, however, part
of the vibrationa! energy can be used to over.
come the barrier. The minimum energy (2. 55848;
has the normal component kinetic energy of 2.5
which is just the barrier height, In general,
when the total energy is slightly larger than the
barrier height, the reaction becomes pessible.
Also, it is apparent that the vibrational energy
is very effective in overcoming the barricr, since
almost all of the vibrational energy is used.

2. In the vicinity of the minmum energy the
reaction probability is maximum and has the
value of 0.5. This is because, at these energies,
the 'upward trajectories achieve the reaction
without fail, while the downward trajectories
are totally ineffective,

3. Discontinuity at E=7.75504 and E=

Journal of the Korean Chemical Society
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16. 6711

At these energies the upward trajectories for
E=7.75504 and downward trajectories for E=
16. 6711 exhibit a similar behavior as the E=
28/3 trajectories in the uniform potential case.

4. Discontinuity at E=9. 92425
From this energy the downward trajectories start
to succeed in achieving the rearrangement.

5. Discontinuity at E=11. 2449
This is due to the partial redissociation of the
products. This backward rearrangement
possible if the energy is less than 11. 2449, al.
ways possible if E=12.613, and only partially
possible if the energy is between the above two

is not

values.

6. Summary

The simplification introduced by Jepsen-Hirs.
chielder to the idealized potential is removed to
get physically meaningful results, at least in the
qualitative sense. The results we obtained show
that several features previously ignored in the
Jepsen—Hirschfelder model can be reascertained
in our model. They are the availability of the
vibrational energy in overcoming the potential
barrier, the redissociation of the products, and
the occurrence of translation-vibration energy
transfer,

Quantitatively too, our results agree with those
obtained by Wall and his coworkers much better
than Tang’s results obtaied by use of Jepsen-
Hirschfelder model.
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