KOREAN JOURNAL OF CROP SCIENCE (한국작물학회지)
- Volume 19
- /
- Pages.100-131
- /
- 1975
- /
- 0252-9777(pISSN)
- /
- 2287-8432(eISSN)
Studies on Some Weather Factors in Chon-nam District on Plant Growth and Yield Components of Naked Barley
전남지역의 기상요인이 과맥의 생육 및 수량구성 요소에 미치는 영향
Abstract
To obtain basic information on the improvement of naked barley production. and to clarify the relation-ships between yield or yield components and some meteorogical factors for yield prediction were the objectives of this study. The basic data used in this study were obtained from the experiments carried out for 16 years from 1958 to 1974 at the Chon-nam Provincial Office of Rural development. The simple correlation coefficients and multiple regression coefficients among the yield or yield components and meteorogical factors were calculated for the study. Days to emergence ranged from 8 to 26 days were reduced under conditions of mean minimum air temperature were high. The early emergence contributed to increasing plant height and number of tillers as well as to earlier maximum tillering and heading date. The plant height before wintering showed positive correlations with the hours of sunshine. On the other hand, plant height measured on march 1st and March 20th showed positive correlation with the amount of precipitation and negative correlation with the hours of sunshine during the wintering or regrowth stage. Kernel weights were affected by the hours of sunshine and rainfall after heading, and kernel weights were less variable when the hours of sunshine were relatively long and rainfalls in May were around 80 to 10mm. It seemed that grain yields were mostly affected by the climatic condition in March. showing the negative correlation between yield and mean air temperature, minimum air temperature during the period. In the other hand, the yield was shown to have positive correlation with hours of sunshine. Some yield prediction equations were obtained from the data of mean air temperature, mean minimum temperature and accumulated air temperature in March. Yield prediction was also possible by using multiple regression equations, which were derived from yield data and the number of spikes and plant height as observed at May 20th.
Keywords