A Note on a Binomial Identity

Do Sun Bai

A binomial identity is proved and two examples of its application are displayed; one in connection with the probability distribution of the sample size random variable in a certain sequential sampling plan based on independent Bernoulli trials, and the other in connection with a generalization of the "Banach's match box problem."

Theorem For any nonnegative integers r_1 and r_2 and $0 \le p \le 1$ with q = 1-p, define $A_p(r_1,r_2)$ by

$$A_{p}(r_{1},r_{2}) = p^{r_{1}+1} \sum_{k=0}^{r_{2}} {k+r_{1} \choose r_{1}} q^{k} + q^{r_{2}+1} \sum_{k=0}^{r_{1}} {k+r_{2} \choose r_{2}} p^{k}$$
 (1)

Then

$$A_{\mathfrak{d}}(r_1, r_2) \equiv 1. \tag{2}$$

Proof The case p=0 or 1 is easy. Next, assume that $0 . We will use mathematical induction. It can easily be seen that (2) holds for <math>r_1, r_2 = 0$ or 1. Assume that $A_p(r_1, r_2) = 1$ for some r_1 and r_2 . Then by reasons of symmetry it is sufficient to show that $A_p(r_1, r_2+1) = 1$.

$$A_{p}(r_{1},r_{2}+1) = p^{r_{1}+1} \sum_{k=0}^{r_{2}+1} {k+r_{1} \choose r_{1}} q^{k} + q^{r_{2}+2} \sum_{k=0}^{r_{1}} {k+r_{2}+1 \choose r_{2}+1} p^{k}$$

$$= {r_{1}+r_{2}+1 \choose r_{1}} p^{r_{1}+1} q^{r_{2}+1} + {1-q^{r_{2}+1} \sum_{k=0}^{r_{1}} {k+r_{2} \choose r_{2}}} p^{k} + q^{r_{2}+2} \sum_{k=0}^{r_{1}} {k+r_{2}+1 \choose r_{2}+1} p^{k}$$

$$= 1 + {r_{1}+r_{2}+1 \choose r_{1}} p^{r_{1}+1} q^{r_{2}+1} - q^{r_{2}+1} \sum_{k=0}^{r_{1}} p^{k} {k+r_{2} \choose r_{2}} - q {k+r_{2}+1 \choose r_{2}+1}$$

Now,

$$\sum_{k=0}^{r_1} p^k \left[\binom{k+r_2}{r_2} - q \binom{k+r_2+1}{r_2+1} \right] = \sum_{k=0}^{r_1} \left[p^{k+1} \binom{k+r_2+1}{r_2+1} - p^k \binom{k+r_2}{r_2+1} \right]$$

^{*} Department of Industrial Engineering, Korea Advanced Institute of Science, Seoul.

$$= p^{r_1+1} {r_1+r_2+1 \choose r_2+1} - {r_2 \choose r_2+1}$$
$$= p^{r_1+1} {r_1+r_2+1 \choose r_2+1}.$$

Hence we have $A_p(r_1,r_2+1)=1$.

Example 1 (A sequential binomial sampling plan) Suppose that independent observations are to be taken sequentially on the Bernoulli random variable U with P(U=1)=p and P(U=0)=q=1-p, $0 . The observations are to be stopped as soon as at least <math>k_1$ ones and at least k_2 zeroes are obtained ([3], pp.144): that is when

$$\sum_{i=1}^{N} U_{i} = k_{1}$$
 and $N - \sum_{i=1}^{N} U_{i} \ge k_{2}$,

or

$$\sum_{i=1}^{N} U_{i} \ge k_{1}$$
 and $N - \sum_{i=1}^{N} U_{i} = k_{2}$,

where k_1 and k_2 are preassigned positive integers and N denotes the total number of observations required under this sampling plan. Then it can be shown that the probability a_n that N=n is given by

$$a_{n} = P(N = n) = {\binom{n-1}{k_{1}-1}} p^{k_{1}} q^{n-k_{1}} + {\binom{n-1}{k_{2}-1}} p^{n-k_{2}} q^{k_{2}}$$

$$n = k_{1} + k_{2}, k_{1} + k_{2} + 1, \dots$$
(3)

To show that $\{a_n\}$ is really a probability distribution, we have to show that $\sum_{n} a_n = 1$. Now,

$$\begin{split} &\sum_{n} a_{n} = \sum_{k_{1}+k_{2}}^{\infty} \binom{n-1}{k_{1}-1} p^{k_{1}} q^{n-k_{1}} + \sum_{n=k_{1}+k_{2}}^{\infty} \binom{n-1}{k_{2}-1} p^{n-k_{2}} q^{k_{2}} \\ &= 2 - \left[p^{k_{1}} \sum_{j=0}^{k_{2}-1} \binom{j+k_{1}-1}{k_{1}-1} q^{j} + q^{k_{2}} \sum_{j=0}^{k_{1}-1} \binom{j+k_{2}-1}{k_{2}-1} p^{j} \right] \\ &= 2 - A_{p}(k_{1}-1, k_{2}-1) = 2 - 1 = 1. \end{split}$$

Example 2 (A generalization of the Banach's match box problem) Consider two boxes A and B containing r_1 and r_2 matches respectively.

Matches are drawn one at a time with probability p from box A and with probability q=1-p from box B. The moment when, for the first time, it is discovered that a box is empty, the other box may contain k $(k=0, 1, \dots, r_1(r_2))$ matches.

Therefore the event that box A will be found to be empty when box B contains exactly k matches (i.e., r_2-k matches have already been used up from box B) is equivalent to the event that exactly r_2-k failures preced $(r_1+1)th$ success in a sequence of independent Bernoulli trials with success probability p. The probability of this event is then given by

$$\begin{pmatrix} r_1 + r_2 - k \\ r_1 \end{pmatrix} p^{r_1} q^{r_2 - k} p = \begin{pmatrix} r_1 + r_2 - k \\ r_1 \end{pmatrix} p^{r_1 + 1} q^{r_2 - k}$$
 (4)

where $k = 0, 1, ..., r_2$.

Similarly, the probability that box B will be discovered empty when box A contains exactly k matches (i.e., r_1-k matches have already been used up from box A) is given by

where $k = 0, 1, ..., r_1$.

Combining (4) and (5), we obtain the probability b_k that when one box is found to be empty, the other box will contain exactly k matches as

$$b_{k} = {r_{1} + r_{2} - k \choose r_{1}} p^{r_{1}+1}q^{r_{2}-k} + {r_{1} - k + r_{2} \choose r_{2}} p^{r_{1}-k}q^{r_{2}+1},$$

$$k = 0, 1, \dots, \min(r_{1}, r_{2}),$$

$$= u(r_{2} - r_{1}) {r_{1} + r_{2} - k \choose r_{1}} p^{r_{1}+1}q^{r_{2}-k} + u(r_{1} - r_{2}) {r_{1} - k + r_{2} \choose r_{2}} p^{r_{1}-k}q^{r_{2}+1},$$

$$k = \min(r_{1}, r_{2}) + 1, \dots, \max(r_{1}, r_{2}),$$

$$(6)$$

where u(x)=1 if x>0, and u(x)=0 if $x\leq 0$. Now,

$$\sum_{k} b_{k} = p^{r_{1}+1} \sum_{k=0}^{r_{2}} {r_{1}+r_{2}-k \choose r_{1}} q^{r_{2}-k} + q^{r_{2}+1} \sum_{k=0}^{r_{1}} {r_{1}-k+r_{2} \choose r_{2}} p^{r_{1}-k}$$

$$= p^{r_1+1} \sum_{j=0}^{r_2} {j+r_1 \choose r_1} q^j + q^{r_2+1} \sum_{j=0}^{r_1} {j+r_2 \choose r_2} p^j$$

$$= A_b(r_1, r_2) = 1.$$

Thus we see that $\{b_k\}$ is a probability distribution.

This is a generalization of the "Banach's match box problem ([1],[2])" (the special case when $p=\frac{1}{2}$ and $r_1=r_2=r$), and the well-known combinatorial identity derived from this problem,

$$\sum_{k=0}^{r} {k+r \choose r} \left(\frac{1}{2}\right)^k = 2^r \tag{7}$$

is an immediate consequence of the theorem with

$$A^{1/2}(r,r) = \sum_{k=0}^{r} {k+r \choose r} (\frac{1}{2})^{r+k} = 1.$$

MANAGE.

REFERENCES

- [1] Feller, W., An Introduction to Probability Theory and Its Applications, Vol. I, 3rd ed., New York, John Wiley and Sons, Inc., 1968.
- [2] Riordan, J., Combinatorial Identities, New York, John Wiley and Sons, Inc., 1968.
- [3] Wilks, S. S., Mathematical Statistics, New York, John Wiley and Sons, Inc., 1962.