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1. A Bricf Description on Classical Consumer Theory

We start with a single consumer with given money income g, who purchases
n commodities represented by the vector g at prices p. He chooses g so as to
maximize the utility index u which is a function of g. Thus the consumer’s

objective is to maximize
u(q) subject to ¢ >0 and p’q < u.

In the above calculus-based treatment, the non-negativity constraint can
be ignored, and perfect divisibility is assumed in order to allow the second
inequality to be replaced by an equality. If in addition u is allowed to be

twice differentiable, we may write the first-order maximization conditions as:
(D) uy—p=0

(2 Plg =1

where u; is the vector of partial differentials of u with respect to g. The
Lagrange multiplier, 1, may be interpreted as the marginal utility of income
(for the purpose of this paper, expenditure is substituted for income).

The n equations (1), stating that relative marginal utilities must equal
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relative prices, together with the budget constraint (2), may be used to
eliminate 4 and thus to give the quantities, ¢, in terms of the known prices,

p, and income g Formally

(3) ¢ =q(wp)

represent the n demand equations. At this point, we may remark that if
we now replaced # by some monotone increasing function of u, f(u) say, then
equations (3) would be unchanged, though the value of 2 in (1) would not
remain constant. This justifies the use of u as one cardinal representation of
an ordinal preference ordering or indifference mapping. These demand
functions have three properties:
(1) They satisfy budget constraint.
(ii) They are homogeneous of degree zero in all prices and total income.
(iii) The implied Slutsky substitution matrix is symmetric and negative
semidefinite with rank n—1,
The latter two are properties of the classical demand function. Since any

set of demand functions that satisfies these three conditions is derivable
from a well behaved utility function, we call such a set a “complete system

of theoretically plausible demand functions.”

2. Linear Expenditure System and Its Constraints

Over twenty-five years ago, Professor Klein and Rubin [1] presented a
complete set of demand relations which have, over time, come to be known
as the linear expenditure system (the name, linear expenditure system, is
associated with the work Stone [6]). In matrix form, this system can be

written as

(4) pg = pb + a(p — p'b),



. - . C
Lee: Linear Expenditure Systen 69

1 Oeeeenn0 g1 s
where 5 0 faee O = i p= i
vhere p= . . % s 4= 2, P= 0,
D eneees P ! 1y qn /)n
by | a1
b= , and a:} ‘
b, la, |

In (4), b may be identified with a vector of quantities to which consumers
are in some sense committed and a denotes a vector of constants which sum
to unity. Then, on the hypothesis (4), the expenditure on the ;-th commodity
(here, category of commodities) is equal to a certain basis consumption, &
valued at current prices plus a certain proportion, a¢; of supernumerary
income, measured here by total expenditure, g less total committed expendi-
ture, p’b. On the assumption that g >> p’b, the system (4) entails that consumers
first use up a certain amount of their total expenditure in acquiring the
consumption vector b at current prices, whatever they may be, and then
distribute their remaining income over the set of available commodities in
fixed proportions given by the elements of a. The linear expenditure system
(4), under the assumption g > p’q, which is compatible with three conditions
(that is, (i) budget constraint, (ii) homogeneity, and (iii) the implied
Slutsky substitution matrix is symmetric and negative semidefinite) has the

following constraints? :

i1) 0 < a;<1: this condition rules out inferior goods and complemen-

tary goods.

iii) The assumption g . p’b means ¢,—b, > 0,

Geary and Samuelson [3], (4] demonstrated that the Klein-Rubjn demand

1) See Stone (6] for a detailed explanation.
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relations implied a utility function of the form:

(5) U=0 1T (g; — b,
i=1

n

where 4; >0, 3 a;=1.0, and ¢; — 5, >0
i=1

e .

Maximization of (5) subject to budget constraint yields the set of demand

relations:

6) g=UT—7rpHb+ 711

where 7 is a nx 1 vector with elements a,/p;,, where the q; are parameters
to be estimated. And I is unit matrix. The relation (6) corresponds to the
system (4). Here, after ruling out inferior goods and complementary goods
(or, after grouping them together) we can avoid the constraint 0 <Cq; 7 1 for
any empirical research. Econometrics does not deal with exact relationship.
Probabilistic considerations are fundamental throughout. The pure theory of
consumer demand shows how a relationship may be derived, via the route
of utility maximization, expressing quantity demanded as a function of relative
prices and real income. There may be an epidemic, a disturbance of inter-
national relations, a sudden and temporary change of fashion, or, in fact, a
veritable multitude of factors which may come to have a direct effect on
demand, but which are not accounted for explicitly in the theoretical deri-
vation of the relationship. These extra factors are not permanent, regular,
or measurable, yet they are definitely present and are not necessarily negli-
gible. If there is found to be a major systematic factor which strongly influ-
ences demand, and which is not included in the theory, then that theory must
be altered to encompass this variable. Let us write the typical demand func-

tion, into which the disturbance terms enter additively, as

() g =T —7rp)b+ rp + v,

where » is a nx 1 disturbance vector for estimating parameters (a and b).
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We use time-series data or cross-section data for our empirical research

according to the related purpose. However there are difficulties to be consi-

dered in using two kinds of data.
3. Dynamic Specification and Stochastic Specification?

The linear expenditure system can be made more flexible by allowing the
parameters (a and b) to vary systematically with variables that are exoge-
nous to the system. This device would allow various dynamic specifications.
In this paper, only the dynamic form of b/ s is discussed for the sake of a
little more simplicity. We adopt the so-called habit forming model by

considering the dynamic form of b’s as a partial adjustment form,

(8) ba =a+ Bizit-n,
where z;,_, is a variable representing consumption of the i-th good prior
to period ¢#. The two assumptions made based upon the level of consumption
take z;;_, to be: (a) the highest level of consumption of the i-th good
during the three years prior to period #, and (b) the average level of con-
sumption of the i-th good during the three years prior to period ¢, by taking
into account the habitual consumption pattern. Then, we can write the

demand functions with varying b/s as
() gu=bie— 4 3 puebt poputo
git = Djt pit £~ kt Ykt ﬁit M ity

where b;; is the necessary quantity of goods in period f. In matrix form

this system is
(10) ¢ = (I=7p")b + 71+ V:

for each period ¢. It would be convenient to assume that the »'s for each

time ¢ are mutually independent. However, this assumption is inconsistent

1) Many peints of this section follows Pollak and Wales (8],
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with the budget constraint, which requires that
(11> i,vi = 0, t:l, ...... , T

where £ is the ax 1 column vector (I, 1, -+ 1)’. That is, v's for each time
are dependent upon each other. To satisfy (11), the covariance matrix
of disturbance terms for each other must be singular.

In specifying the structure of disturbance terms, this paper considers the
method which Pollak and Wales [8] feel is superior among three methods
preseated by them. This method is based on replacing b;; in each demand
equation by b; -+ u;,, where u, is a random variable for each period. The
implied stochastic demand functions of the form (10) where v, is given by
v, = (I— rpHu,. The u’s can be interpreted as random variations in the neces-
sarv baskets. Pollak and Wales demonstrated five implications of this kind
of error structure. That is, they are: (i) u, is directly related to v,, (ii) the
adding-up condition (I1) is automatically satisfied, (iii) proportional changes
in all prices and income (providing these changes do not affect the distribu-
tion of the v’s) will not affect the distribution of the wu’s, (iv) the Slutsky
substitution matrix Is symmetric and negative semidefinite regardless of the
values assumed by the v’s, and (v) this method of specifying the error struc-
ture treats all goods in a symmetric manner.

In order to proceed to the estimation of parameters, let us consider the

general assumptions on the distributions of the u’s;

(12) E(u;)=0

(13> E(”it: ujt+T):Zt, when 7T=0
=0, when T-:0

(14) The u's have a multivariate normal distribution.

The implications for the distribution of the v’s of our assumptions on the

distributions of w’s are easily derived. Since the v’s are linear combinations
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of the wu’s, they also have a multivariate normal distribution. The variance of
the disturbance term in the i-th demand equation is independent of income,
and it is not directly related to consumption of the :-th good, although it is
inversely related to the i-th good. One would expect autocorrelation of the
v’'s of a higher level of consumption of the :/-th good yesterday is associated
with a higher level of consumption of the i/-th good today. But in the habit
forming models which depend on lagged consumption, this relationship has
already been taken into account. In all of these models, a higher level of
0, implies a higher level of g;,., which in turn implies a higher level of
b, and ¢;;- Thus v’s from different periods are mutually independent in the
habit forming models which depend on consumption in the preiod. TFinally,
inter-correlation or (multi-)collinearity between relative prices and real income
(explanatory variables) is a relative matter. The sampling error of an indi-
vidual coefficient depends on both the inter-correlation with other explanatory
factors and upon the over-all correlation of whole equation. Thus, the inter-
correlation is not necessarily a problem unless it is high relative to the over-
all degree of multiple correlation among all variables simultancously.

For more simplicity, FE(u;, u;)=3,; is assumed to be the following two

kinds of heteroscedasticity.

(15) Zt:Diag (012{]1!2) """ ...Iailzqntz)

(]6) Zt:D1ag (012QIt; ......... )onZQnt>-

In this fashion, we can compare the relative efficiency of the related

estimators between two Yinds of assumed heteroscedasticity.
4. Estimation Method

The Klein-Rubin linear expenditure system was first estimated by Stone

(6]. We described the structure of disturbance terms in previous section. We
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use the maximum likelihood method, which we believe to be most appropri-

ate, for estimating parameters. The stochastic demand equations are written

as

(17) ¢ = —rp")b + ru+v,
=T =) b+ rpt+ (I —rp)u
= —7p)b + 1 +Mu,

where M,=(I—7p’). The disturbance wvector of the stochastic demand
equation is given by v,=(I—7p’)u,=Mu;. Herein, consider the following
useful theorems:
Theorem 1V If any nx1 vector X is distributed according to N(u,3),
then Z=D X is distributed according to N(Du, DY, D).
This theorem includes the cases where X may have a nonsingular or a

singular distribution and D may be nonsingular or singular.

Theorem 2% Since u; is assumed to be multivariate normal with covariance
matrix Y ,, then v, = M,u, is multivariate normal with covariance matrix £,
= M.> M/ and W, = p,v, is multivariate normal with covariance matrix S;=
D:Q:p., where p,=Diag(p;s,-+--+- ,Pnt)- As both @, and S, are singular, the densi-
ties of v, and w,; cannot be expressed directly in terms of Q; and S,. Barten
[7] has shown, however, that in this case the density of w, (ignoring a

factor of proportionality) is given by
I S T
fw) =\ S+ii"| "« €
where { is the nx 1 column vector (1, ... , ). Hence, the density of v,

(again ignoring a factor of proportionality) is given by

1 —é—v,’(!?t~\—p¢“ii’pr‘)“v.
e

g(@)=1Qu+p NP

1) T.W. Anderson, “Introduction to Multivariate Analysis,” New York, John Wiley and Sons,
pp. 25-27.
2) This theorem comes form Pollak and Wales[8].
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Applying the Theorem I, v, is a linear transformation of u,, with the

covariance matrix, Q,=M,Y .M, . Since the matrix M, is singular, as shown

by the previous section, the covariance matrix @, is also singular. However,

there is the estimation theorem (Theorem 2) shown by Barten (7] with the

singular matrix. Here, applying Theorem 2 to the estimation of parameters,

the likelihood function of the sample (v1,Dz,++-+- ,Ur) 1s:
T
L(vy, vt W)= 1T 1g<vt)
=
1 1,40
T P
t=1

where A=0,+p,Yii’p,”! and the logzrithm form of the above likelihood

function is the following:
L(py, e ,v,.):‘zl log g(z¢)
s

1 s (log| A +v/A ).

T2e

Our purposes to maximize L with respect to @, b, and ¢ subject to the
T

linear constraint, i’a=1. Let G =3 (log|A. —v,/A p;); then, maximizing L
t=1

is equivalent to minimizing G. Let us solve this problem through the well-

known Lagrange multiplier methed. Introducing the Lagrange multiplier, 4,

T 1
o= 3 (loglA| 24 v/ A ) —A(i’'a—1),
t=1

where v, = g—(I—yp’)b—7p for time . For the model which is given by
by = a; + Bizis_-, where z;,.1 is any predetermined variable, ¢ is minimized

with respect to a;'s, a;'s, 8/s, and ¢;’s. Then we can get the best linear

unbiased estimators.
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Remarks on Theoretical Background of the Restricted EstimatorD

In the classical general moedel y,.1,=X3-+u with the appropriate assump-
tions about the distribution of w's we get the estimator £=(X’'X)"1X'y by
the maximum likelihood method or the least-squares method, and the
covariance matrix of /, Var($)=¢2(X'X)".

Let us consider the linear restriction model. Linear restrictions on parameters
to be estimated may be expressed in the following form: y=RfA where 7 18
a known column vector of ¢ being the number of restrictions, and R is a
known matrix of order gxn. We now require the estimated coefficient vector
b, to satisfy the restrictions, so we must choose b to minimize (y— Xb)’'(y—
Xb) subject to the linear restrictions, Rb=y. Through the Lagrange multiplier,
we get the result b=45+ (X' X) 'R'[R(X'X) 'R Y (y—R})],where {=(X'X)"!
X'y, and the covariance matrix of b, Var(b)=A—R'(RAR’)"'RA, where
A=0g?(X’X)"! being the covariance matrix of the unrestricted least-squares
estimator. It is seen that the covariance matrix of is obtained from A4 by
deucting a positive semi-definite matrix, R'(RAR’) 'RA. Therefore we can

say that the restricted estimator b is more efficient than the unrestricted one, £
5. Conclusion

Pollak and Wales [87] estimated the parameter: &y,------ by and  gg,eeeees ,
' n-1
n; and ag,ee-ee- ;a,—1 and the last a, obtained by deducting Y a; from 1,
i=1

through the maximum likelihood method.

Theoretically we know that the restricted estimator obtained through the
Lagrange multiplier is more efficiént than the unrestricted one, when any
linear restriction on parameters is given.

We have the estimation theorem shown by Barten [7], with its singular

covariance matrix. Furthermore, we have the linear restriction on ¢;. Now

ﬂl) H. Theil, Econometric Forecasts and Policy, Second Revised Edition, North-Holland, 1961,
pp. 331-323.
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we can use the Lagrange multiplier so as to maximize the associated likelihood

function subject to that linear restriction.

SUMMARY

Over twenty-five years ago, Professor Klein and Rubin [1] presented the
linear expenditure system. That system was first estimated by Stone [6].
Subsequently many investigators have estimated that system.

In this paper, many points of the error structure shown by Pollak and
Wales [8] are referred to. Barten [7] presented an estimation thecrem on a
singular covariance matrix. In order to estimate parameters, we place an
emphasis on the maximum likelihood method which we believe to be most
appropriate. As we have one linear restriction on parameters to be esti-
mated, we maximized the associated likelihood function subject to that linear
restriction through the well-known Lagrange multiplier method.

This paper is organized in the following fashion: (1) a brief description
on classical consumer theory, (2) a linear expenditure system and its con-
straint, (3) dynamic specification and stochastic specification, (4) estimation

method, and (5) conclusion.
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