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Table-1 conitnud Table-2, Flexural Stiffnesses,
i:zg‘e f;l//:gl 11;2//1‘1‘172 I;lb”d Poor Mgge D, Calculated by Equation(2)
failure Sample name le in?
Urecomb Core

PSUAL 5,952,168
PUCAL—) 2,040 3,540 396 510 C PSUFG 1. 678,952
PUCAL—2 2,230 3,720 528 576 C PSUGS 8,605,410
PUCFG—1 860 1,320 360 522 C MSUAL—1 2,287,156
PUCFG—2 1,200 1,560 288 348 C MSUAL—2 4,112,000
PUCGS—1 1,990 3,060 240 450 D PSUP 7,076,250
PUCGS—2 2,280 2,760 606 606 D FGSUFG—1 2,133,378
MUCAL—1 1,920 2,820 432 516 C FGSUFG—3 4,694,530
MUCAL—2 1,300 2,340 384 540 C PPCP 36,767,812
PUCP—1 1,000 2,760 444 570 E PUCAL 9,751,470
PUCP—2 1,560 4,660 636 912 A PUCKG 2,833,000

MUCAL—I 4,330,097
PUCP—3 1,510 3,360 576 — B MUCAL 2 6,992 924
PUCP—4 1,260 2,160 324 576 B PUCP 11, 666, 250
PUCP—5 S 960 1,500 168 306 B- PUCP—7 24,288,750
PUCP—6 1,380 2,220 192 420 B FGUCFG 2,133,378
PUCP—7 2,760 3,720 360 408 A FGUCFG(R) ,1736,373
PUCP—8 2,160 4,320 276 . 456 A PUCP(R) 7,076,250
FGUCFG—1 300 420 372 394 C
FGUCFG—2 283 420 360 390 C Table-3, Modulus of Rigidity
FGUCFG(R)—! €07 926 636 660 D Modulus of rigidity Gp51
FGUCFG(R)—2 630 960 618 618 D Sample name . Qua;te: )
PUCP(R(~1 1,650 3,624 576 696 E Midpoint test test point
PUCP(R)—2 1,800 3,600 1,272 1,332 F PSUAL—1 265 203
X B AE mTEE PSUAL—2 203 172
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PSUFG—1 ' 170 159
PSUFG—2 209 167
PSUGS—1 173 99
PSUGS -2 305 229
MSUAL--1 3¢7 —
MSUAL-—-2 179 260
PSUP—1 320 223
PSUP—-2 340 237
PSUP—3 187 194
PSUP—4 162 141
PSUP-—5 89 103
PSUP—6 137 137
FGSUFG—1 123 97
FGSUFG--2 99 88
FGSUFG—3 100 108
FGSUFG—4 128 120
PPCP—1 113 125
PPCP-—2 113 125
PUCAL—1 964 904
PUCAL—-2 1,073 974
PUCFG—1 483 385
PUCFG—2 921 526
PUCGS—1 835 650
PUCGS—2 989 573
Table 3. Modulas of Rigidity(continued)

Modulus of rigidity,G,, psi

Sample name

Midpoint Quarter-point

test test
MUCAL—1 1,729 1,288
MUCAL-2 591 577
PUCP—1 333 520
PUCP-2 560 1,085
PUCP—3 539 674
PUCP—4 434 384
PUCP—S5 318 251
PUCP--6 483 397
PUCP—7 714 475
PUCP—8 538 566
FGUCFG—1 139 97
PGUCFG—2 130 97
FGUCFG(R)—1 436 348
FGUCFG(R)—2 468 373
PUCP(R)—1 849 1,003
PUCP(R)—2 966 1,196

The highest value for the midpoint load test
in MUCAL should obviously be discarded, consi-

dering the agreement of the values for the

HBEA A2 R SRl Bee D

suter quarter-point loadtests within the nther
opecimen combinations. .

The general outlook in Figs. 6 and 7 shows
that the moduli of rigidity obtained have consi-
derable variations for each type of core mat-
erial. Possible sources of variation are considered
to be:

(1) nonhomogeneity of component materials,

(2) relative slip between the facing and core
at the glue line,

(3) the possibility of movement of the neutral
axis because of the low rigidity of the
core,

(4) compression of the core in the direction
of load, and

(5) experimental error.

Combining the results ef tests the mean core
shear moduli are 180 psi for the paneis having
solid polyurethane foam core and 630 psi for
the panels having urecomb core.

From the values of the moduli of rigidity for
the specimens in which the facing material of
fiberglas is involved, two facts can be stated.
First, the modulus of elasticity, E, in the com-
putation of D for the specimen with a facing
of fiberglas seems to be some that too high.
Second, the materials and fabrication of these
specimans were the most uniform of all the
samples tested. It is shown in the comparison
between the specimens fabricated with the
normal glue and those with a special rigid glue
that the rigidity of the glue line improves the
bending stiffness of the sandwich panel system
as a whole by improving the effective value of
G,.

Alternatively, values of G, were calculated by
Equation (8) which is a simplified formula.
These results are presented in Table 7, The
values of G, in Table 7 are higher than those
in Table 6 by from 13 to 34 per cent. The
ratios of the G, value based on midpoint load
tests and those based on quarter-point load tests
were found to be, mostly, close to the number
1.0
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Another method used to find the bend.ng
stiffness, D, and the shear modulus, G, was
the solution of the two simultaneous equations’

P.at P . . .
1u1:~‘-1§;—+71'va— for midpoint loading

11P,at | Py . .
w’:—‘js_gD—+ 811\/' for quarter-point loading.

These two equations are derived from Eq. (8)
by using appropriate numbers from Table ] for
K, and K,, depending upon the loading condit-
ions, midpoint load test or euter quarter point
load test. This sttempt, however, is considered
to be inappropriate for these experimental resu-
Its. If Eq. (8) is exactly representative of the
behauior of the construction, theoretically a
unique soiction of the two equations can be
obtained within the range of the ratio of slopes

P,/w, and P,/w, which lies between 0,5 and

Table-4, Modulas of Rigidity

“by simplified formula)

Modulus of rigidity, G, psi
Sample name

" Midpoint  Quarter-point
test test
PSUAL—1 440 243
PSUAL—2 243 207
PSUFG—1 211 198
PSUFG—2 260 209
PSUGS-—1 206 118
PSUGS—2 364 274
MSUAL—1 464 —
MSUAL—2 217 320
PSUP—! 429 299
PSUP—2 322 318
PSUP—3 251 261
PSUP—4 217 189
PSUP—5 120 138
PSUP—6 184 183
FGSUFG—1 134 106
FGSUFG—2 107 97
FGSUFG—3 106 115
FGSUFG—4 135 128
PPCP—1 128 142
PPCP—2 128 142
PUCAL—1 1,125 1,061
PUCAL—2 1,279 1, 146
PUCFG—1 581 465
PUCFG—2 1,147 645
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Table-4, continued

Modulus of rigidity, G,, psi

Sample name ‘ Midpoint Quarter-point
test test
PUCGS—1 962 750
PUCGS—2 1,142 660
MUCAL-—1 2,237 1,674
MUCAL—-2 700 1692
PUCP—1 418 652
PUCP—2 703 1,361
PUCP-—-3 676 845
PUCP-—-4 545 482
PUCP—-5 399 315
PUCP--6 607 498
PUCP—7 © 834 555
PUCP—8 628 662
FGUCFG—1 153 106
FGUCFG—2 142 106
FGUCFG(R)—1 510 410
FGUCFG(R)—2 552 445
PUCP(R)—1 1,140 1,346
PUCP(R)—2 1,927 1,606
0= midpoint tes§
sool” - Azquarter-point test
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Fig. 6, Modulus of Rigidity of Core for

Sampls with the Core of solid
Urethane

0,683, However, as the ratio approaches the
value 0,5, D approaches infinity and as the
ratio approaches 0,688, G, approaches infinity.

Neither D nor G,, in reality, can approach
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infinity. In many cases of these specimens the
test result indicates these ratios are near or
outside of the extreme limits. The principal
reason for this problem is that the equations
are such that the effects of experimental error
are magnified by the computations.

In an attempt to check the range given in
the analysis of Hoff and Mautner (2), the values

pa/2 were computed as given in Table 8, In
the computation of p defined byEq. (14), the
values of G, in Table 6, computed by using Eq.
(8) for the midpoint load test and for the
specimens made of the same facing materials on
both sides were used. According to Hoff and
Mautner, when pa/2 is greater than 100 Eq.
(11) which is essentially Eq. (8) holds. However,
looking at the computed values of pa/2 in Table
8 all the numbers except those for the specim-
ens, FGUCFG(R) are far below 100,

This implies that the real values of D for
these specimens are less computed by Eq. (2),
and thus the real values of G, are greater
than those in Table 6, The possibility of a decrease

1, 2007 O=midpoint test
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Fig. 7. Modulus of Rigidity of Core for

Samples with the Core of Urecomb
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in D may be supported by two statements as
follows: First, in the analysis of Hoff and Maut-
ner, when pa/2 is less than 0,1 Eq. (10) holds.
Second, according to Singh, et al. (11), for a

sandwich having a facing of considerable indiv-

Table-5, pa/2(p is defind by Eq. (14))
Sample name pa/2
PSUP—1 : 8.06
PSUP-—2 6,98
PSUP—3 6.17
PSUP—4 5.73
PSUP—S5 4,24
PSUP--6 5.28
FGSUFG—1 43,11
FGSUFG—2 38. 62
FGSUFG—3 46. 86
FGSUFG—4 53.11
PPCP— 6.94
PPCP—2 6,94
PUCP-) 9.18
PUCP—2 11.90
PUCP-—3 11. 67
PUCP—4 10.48
PUCP--5 8.97
PUCP--6 11.06
PUCP~7 15.85
PUCP-—-8 13.76
FGUCFG—1 46,04
FGU FG--2 44, 39
FGUCFG(R)—1 112 62
FGUCFG(R)—1 17.14
PUCP(R)—1 13.14
PUCP(R)—2 14.02

idual stiffness two neutral axes exist.

The compressive facings stress o, and the
tensile facing stress o, were calculated by Eq.
(16) and Eq. (17). and the core shear stress 1
were calculated by Eq. (21). The stresses o,
g, and were calculated by Eq. (19) and Eq.
(22), which are simplieied equations for the
panels with facings of the same material. These
stresses were calculated based on the yield loads
P, y;4 presented in Table 3,

The stresses o, and o, are, in most specimens,
far below the reported strengths of the facing
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materials concerned. This indicates that yield
or failure of the panel system occurs for causes
other than tensile or compressive failure of the
facing materials. In fact, failures in most of
the specimens have taken place in the mode of
either glue line slip, buckling on the top facing,
or local wrinkling. It was found that fabrication
of panels using a special rigid glue not only
improves the effective G, value of the core
material, but also increases overall flexural
strength by improving the shearing strength of
the glue line.

It was shown that while most of the sample
panels designated by PSUP and PUCP failed in
the mode of glue line slip, tho panels designated
by PUCP (R) failed in the mode of either shear-
ing rupture of the core or in the mode of comp-

ressive rupture on the top facing.

V. Conclusions and
Recommendations

The following conclusions and recommendati-
ons can be made based on the results on the
experiment:

1. The deflection of the sandwich panel at
the center can be approximately calculated
by using analytically derived formulae,
provided the elastic constants of the comp-
onent materials are given.

2. Providing a good quality glue line between
facing and core can improve the over-all
flexural stiffness and flexural strength of
a sandwhich panel by making the rigidity
and strength of the component core mate-
rial fully utillized.

3. The simplest forms of formulae for calcul-
ating maximum deflection and stresses
exerted for the panels may be used for
design purposes within the range of mate-
rials and sizes of the sandwhich panels
used in this experiment.

4, Calculation of D and G; by solving two
different equations obtained from different

modes of loading and by providing flexural

-3670-
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test data for a sandwhich panel is not valid,
in reality, because of the variation of the
test data.

5. Further tests would be required to determ-
ine the relationship between slip at the
glue line and horisontal shear stress. In
order to account for this in the determin-
ation of the mechanical properties of the
panels D and G, other formulai which do
not assume rigid glue lines must be used.

6. However, the data presented do indicate
the relative stiffness and strength of the
panels tested and do provide some guide

lines for design if used conservatively.
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Appendix

VI. Matidiatical Development
of Equations

The simply supported strip of sandwich const-
ruction is considered to be made up of two
cantilever beams. The relations between stress
and strain and the conditions of equilibrium and
strain compatibility in the facings and core of
the sandwich strip lead to a differential equation
that is satisfied by a stress function. A suitable
stress function is chosen and fitted to the proper
boundary conditions of each facing and of the
core. When this is done, it is found that only
three constants remain to be determined by the
conditions at the fixed and of the cantilever.
These constants are determined by placing the
horizontal displacements attop surface of the
upper facing at the bottom surface of the lower
facing and the vertical displacement near the
center of the core(at the origin of the coordinate
system used) equal to zero. Thus, the facings
anid the core are not restrained from rotaing
about their associated points of restraint except
by their The
result is that their individual stiffness in bending
are neglected at points directly under the cent-
ral load. Therefore, the theory developed leads
to a conservative estimate of flexural

interactions with each other,

rigidity
if the individual stiffness of the facings do cont
ribute substantially to the total stiffness of the
sandwich strip. Both core and faces will be
assumed to be made of orthotropic materijals,
such as wood. The result can be extended imm-
ediately to cases where one or all of the materi-
als are isotropic.

The thickness of the facings will be denoted by
f, and f,, respectively, that of the core by ¢,
and the total thickness by %, The width of the

strip will be denoted by 6. The neutral plane,
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z=0 in Figure 1, is taken to be at distance ¢
from the facing whose thickness is f,. The value
of ¢ will be determined in the course of the
analysis. The difference, ¢—4, will be donoted
by p.

The reduction in stiffness of a rectangular
strip of length a, as shown in Figure 1, will be
determined by assuming aload P to be at the
center along a line perpendicular to the direct-
ion of the span. The strip will be considered to
be made up of two cantilevers fixed at their
junction x==0 and under the action of a load
P/2 at the end of each, namely at x=a/2 and

x=a/2, The width of the strip will be taken to

be'large in comparison with its thickness, so
that the cantilever may be considered to be
approximately in a state of plane strain. One of
the cantilevers under consideration is shown in
Fig. 8.

In the ..ate of plane strain it is assumed that
the components of displacement # and w parallel
to the axes of x and z, respectively, are functi-
ons of ¥ and z only, and that the component v
parallel to the axis of y is zero. All components
of stress and strain and strain are independent
of y. The strain components e,y, ¢y, and ey,
and stress components gy, 0y, all vanich. The
stress component oyy is, in general,, not zero.

Hence, to maintain the strip in state of plane

—y &3

Fig 8. Half of a Simple Supported Panel

>

&

as a Cantilever

strain, tensile on compressive forces must be
applied on the faces y=0 and y=b of the strip.
The influence of these applied forces on the
deflection of the cantilever is assumed to be
negiigible. '

At the planes of separation between the facings
and the core the following conditions hold:

The components of stress ¢,, and g,, are con-

1975, 3. 30

tinuous.

The components of displacement d and w are
continuous.

Within each layer the components of strain
and stress are connected by the following relati-
ons, if the axes of x,y, and z are assumed to be
normal to the planes of symmetry of the orthot-

rophic materials of the faces and core.

Uy u \

x zZx
Cyx==T Oxx— 7 —Oyy— "5 O
xx Ex xx Ey Ez zz

Ugy Uyy

1
€er=—"F Oz f It F0u

i
|
u
eyy:——%‘ian-%'@%dyy—“f%dzz J\ (AD

s s (A2)

In these equations E,, Ey, and E; are Young’s
moduli in the directions x, y, and z, respectively.
Poisson’s ratio w,y is the ratio of the contract-
ion parrel to the y-axis to the extension parallel
to the x-axis associated with a tension parallel
to the x-direction. The quantity G,, is the mod-
ulus of rigidity associated with the directions x
and z,

In the respective layers the components of
stress and strain and the contants of the mat-
erials will be denoted by subscripts 1, 2, and c.
The subscript 1 will refer to the facing of
thickness f,, 2 to the facing of thickness f,, and

¢ to the core.

Since

L’yy:O (AS)
E E

Uyy:—E‘i_uzy a”+—ﬁ-—u,yd" (A4)

Substituting (4) in (1), it is found that in

each layer

1 1
e"=7§—, (l_ux)'u’z)axx‘—E—z(uyz”u +U2:)022

(A5)

1 1
8”2_-5;—(“’” uy,+u,,)dxx+—E’_(l_uyz“z)')azz
Nothing that (p20(17))

E

y z 2
Uyg=—T Uy, Ugy—"F Uy Ugey="TF—U
x .E: F24) z. E z’. x E X2
equations (A5) may be written
€2: =0, — B0,

Crp=— 0.+ T,

(A6)

~3672--



where

a:_”EL (1—‘“;1“3:)'
x
= Gasityat i), (A7)

7:721—; (—uyz%,25).

Within each layer of the sandwich the equat-
ions of equilibrium of the stress components o,,,
0,5 and o,, assure the existence of a stress
function F such that

a,F 2F 2F '
Oz "aztz—: 6122-5,—2’ axz:'za (AS)

Substituting(A8) in (A6), and then making

use of the compatibility equation

%0yy | D%py 8y

T 32 8,9,

it follows that the stress function F satisfies the

differential equation
"‘F 1 F o
a 1 +< G, 2H> 8,78, +a’ ‘ =0 (A9
A suitable solution is

F=g(x—a/2)(2*/3-+¢2)
Expressions of the form (A2),

(A10)
(A6), and (A
10) hold for each layer separately. Equation (A
10) will have the following forms in the core
and facings 1 and 2, respectively.

Fo=g(s—a/D(2"/3+e2)
Fi=g,(x—a/2) (*/3+e2)
F,=g,(x—a/2)(2*/3+¢;2) J
The constants that appear are to be determined

(Al0a)

by the conditions that hold on the planes sepa-

rting the facings and the core, from the condit.
ion

@+
Ogpdi= 9 (AlD)
—(p+1D)
and from the conditions that
0,2=0, at z=—(p+rf.) and z=(4+f;) (Al2)

It follows from (A8) and (AlQ0a) that in the

core

(0z)e=—g(F+e.) (Al13)
(Uxx)c———zgc(x_a/z)z (Al4)
(922)c=0 (A15)

For the facings 1 and 2, the subscripts ¢ are to
be replaced by 1 and 2, respactively.
Equations(A2) and (A6), togethzr with(Al3),

RER A=92 R1Y YReol Heei(d)

(Al4), and (Al5), give the following expressions
for the compoents of strain in the core:

(ezx)c'-— ~—2acgc( x—a/2)z (Al6)

(«u)c—"‘ =—2B:8.(x—a/2)z (ALT)

_Ou,  dw, 1 o
(eu)c——a"’“+ 3, —-—-_G:sz—

— (e

(A18)
where #, and w, denote components of displace-
ment in the core and G, denotes the value of
the modulus of rigidity G,, in the core.

Again the corresponding equations for the
facings are found by replacing the subscript ¢
by 1 and 2, respectively. where r.(z) and 5:(%)

U= g(x~a/2)z+r(2) (AlD)

We=—PBg(x—a/2)2'+5.(x) (A20)
are arbitrary functions which are to be determ-
ined, apart from linear terms, by substitution
of(A19) and(A20) in(Al8). On substituting in
(Al19) and(A29) the functions determined in this
way the following expressions for the components
of the displacement in the core are obtained.

”c:acgc( 2 ) z— & ( +£’c >
ﬁcg‘ Ze p bkt m, (A21)
Wcz-lscgc(x— —;‘)Z’ ~——a%g'£ <.‘¢—%)s
—kex+ne (A2

By writing the subscripts 1 and 2, respectively,
in place of ¢, the corresponding expressions for
the components of displacement in the facings
are obtained.

The condition that the cumponent of displace-
ment # shall be continuous at the plane, Z—q,
requires that

acgc<x~—;—>211——
+k <I-+-mc._.a1g1(x— ) )fl——~( 3 +e,4>
ﬁlsgl.qa

gc( +€c7>+ /3c=c

+ +kd+m, (A23)
This relation is an identity in x, Hence

A go=a, g, (A2D)

and —-5¢ (%‘+e ’1) '9‘. Ll A+m,

:—[3’, 33- > ‘;' P+ k g+ m (A23)
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The continuity of the component w at the

plane z=¢ requires that

»ﬁtgt(x——g-—>qz — Cl%g; (.‘f‘j‘\,—kc,\’-}-nc

:—ﬁxglkfﬁ‘" )q —ﬁg“<\7—‘ 2 ) —kx+n,

. (A26)

This identity in x yields the further relation
ﬁcgﬂ’Jrkc:ﬁxgﬁ*Hl (A27)

B.g 1 2 - =887 ”"—+"1 (A28)

The following equations, corresponding to (A
21), (A23), (A27), and (A28),
from the conditions that the componentsy and

are obtained

w are continuous at the plane x=p.

A=A, 3, (A29)‘
gZ‘(% ~'ré’cp> ﬁc = P —kpt+m,

3
:éi (%“*‘e*f’)‘%&f’s kaptm, (A33)
Begpt k=520 +k, (A3D)
ﬁcgcp’ATnc-ﬁzg,b* +1, (A32)

By comparing (24) and (29), it is seen that
a8, =8, (A33)
It will be convenient to introduce the notation

P A_V‘i__(Ex)c(l #x)’#.yx)x ‘f
P TED— fayive)e

_ (A34)
’ _g_x__(Ez)c(l—#xyli;v_xL )
¥ 49 - (Ex)l(]-—.uxyy x)c
Then in accordance with (24) and (29)
a,

gc= @ g1=N18 I -~

¢ (A35)
Ec="¢ Z1=P18, f
Bi#8, (A36)

in general, if the facings are not made of the
same material.

By introducing the following notations:

E 2 2 2
e S i
:

G
_Z___ —_ ’.-—
7 =n; and G, =ng,

g, can be replaced by g,/n, B, by ns §,, a, by
ne a;, (Ey)y by ng E,, G, by ng, and g, by
D%

The condition that the component of shearing

stress o,, is continuous at the planes z=7 and

19753, 30

Z==—p requires that
plgl(q2+5’c):ﬁ (qz+€1) (A37)
D28, (PP=e ) =g,(pP=e,) (A33)

Further, it follows from (Al12) that

@+f) +e,=0 (A39)
(P+f) +e;=0 (A1)
Hence ¢,—=—(9+f,)? (A4D)

e;=—(b+f.)* (A42)

On substituting (41) and(42) in(37) and (38),
respectively, it is found that

ec=—a—-L (i, 1) (A43)

€g=—=— P’—i(&b/’ﬁf:’) (A1)

It is clear that 7, the distance from the neut-
ral plane 2=0 to the Junction of the core and
facing f,, must be chosen so that the two expr-
essions for e, are equal.

By equating these expressions and recalling
that

p=e—4, itis found that

(1/”P)f22 “f12+2(1/" p)cf, +pxcz
R T GVETS R Ry (A15)

To complete the determinations- of the const-
ants that appear in the expressions for u., w,,
u,, w,, %, and w,, the following conditions are
imposed at the fixed end x=0 of the cantilever

forming the right-hand half of the beam.

we=0 x==0 F&1] (A46)
u, =0 =0 z2=4+f, (A4
u,=0 x=0 c=—(p+f) (A48)

Similar boundary conditions were found to
lead to satisfactory conclusions in the case of a
plywood strip (5),

From conditions (A47) and (A48) and equation
(A21) written with subscripts 1 and 2, respect-
ively, and using (A4l) and (A42), the following

are obtained: ’

gy sy

(A49)

. 2 1
@, gD+ 5 @+
+h (4L = m=0

1
3 nehg

_‘axgx 4 (p+f2) 51 (p+fz)3

2 By () +m=0 (A

From(A46) and(A22) it is found that:
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acp,g,a*

24
Substitute k, in terms of £, from(A27) in(A25)
and k. in terms of %, from(A3l) in(A30) and

substract, obtaining:

Ne=—

(A31)

F 4 ? €D
= &(TW + —.'Snpng + ong

‘-g‘ (——+ ¢¢1+‘° +ecp)
+_3"ﬂx gl(qa +-:g‘p'>
~Loprpeg (@Y (AS2)
From (A27) and (A3L)

ky=k, +ﬁlgi(q’ - ‘Zi_P,> —p.B.g (B —pY) (AB3)

Substract(A50) from(A49) after substituting
(A53) for k, in (A50) and obtain after some
reduction:
a? 2 2
ml—’mz:——axngh e "‘G—[(q*‘f:)!
(o+h)0
+- N NG

b2, sy 18 3
— BB gy I o fy-

n
—51g1(9+f1)(q’ ’_-n_z' P’)
+0:8:8:(p+ (T =)

where: h=4+f,+p+/,

Equate expressions for m,—m, in(A52) and(A54)

and solve for %, and obtain after considerable

(A54)

reduction:

k=—g,{ + Gh [qf1+ =it

+ ”anG (Pf:’ +'3_fz')]

+%—[q’h+qf.'+f

T )]

~ BBl 2 gy Ly -]

(e )

To obtain the deflection at the center of the

(A55)

beam the displacement w, at the end x=a/2,
of the cantilever will be calculated. This will be
measur edra with reference to a point on the
plane of the neutral axis at the middle of the
beam. Consequently, the deflection of points on

the neutral plane at the center of the beam will

BER d=92 79 85t HadD

be numerically equal to the quantity w, calcul-
ated at the end x=a/2 of the cantiever.
In accordance with(A22

(wx)xz kl
From(51) and(28)

5+ (AS6)

3
”1=gx[px ﬂc‘g‘q —ﬁ,—g—q=—~ aé: ]
On substituting(AS55) and(AS57) in (A56) the

following expression is obtained after some redu-

(AST)

ction:

(W )s=a/2= gx{

‘a

ZG—}T [Qf 1

’—fx n "G (P 2 "—fza>]
A )

p a
+ 2 [T+ 5 o]
~ B [ E ec]) sy
and this expression can be further reduced to
the form:
a? 2 1
(w)sza/2= gl l { + ah [a 6"(34}’,’

3
+ ) "pr,’+2f,'+ n na ’)

o CIAS LA L )

p “8 (@ 0+ 30, + 3P

- —(q'+p'+3e;c)]} (A59)

The coefficxent &, can be calculated from the

condition (All),

*d+f, {—p
Orzly=—g8/t¢ (2*+e,)dz

q
_l’xng (2 +eddz
—h

G+
_ng (2 +e,)dz
q

After performing the integrations and making
use of (A4l), (A42), (A13), and (A44) the
right hand side of this equation reduced to:

2T , :
g L B O+ 3
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Ry 832 A7E A 13

+£.(9°+2%)
By(All) this expression is equal to p/2b, Hence:
3p
ADLB0,+ BULPHF0+ 5y (3 39174 17

&=

+2 0, (BT (A0

The denominator is closely related to D, the
stiffness of the beam as calculated without cor-

recting for the effect of shear deformation. For,

q
2
LB\ o\ LB,
P A

D=b
—o+fD —p
1+£ .
+b E2 i‘z dz
q

where A, =(1—#,y%y,),
A =(1— U3ty
Ac=(l—tzyiy:)c

After nothing that

By me(E), _ 1
4, T nad, T maay

the expression for D is roadily reduced to:

(A6a)

and -(%‘)—C—#IA
¢

__ac-

=3 (30,4 801470+ 8t 3T D)
1 «

N ACIE I (A61)
where in accordance with (A34):

bh=a,/a;

It follows from (A69) and(A61) that:

1975, 3. 30

by using(A62), equation (A59) can be written

in the form:

Pa?® h?
(wx)x:a/ZZI:D‘“(l-Hl?‘) (A63)

where:
+ f;—‘l(3<If,'+ %‘—pfﬁflwz—if )
+ .‘Dl%(qa +p3+ 393, +3p'2)

by

&g

(A6D)

— e (P +3e0) ]
In this expression 4 and ¢, are to be calculated
by formulas(A45) and(A43), Further p=—c—4q.

As will be seen from the steps taken to calcu-
lated it, the stiffness D is the stiffness that
would be determined in a lvad-deflection test of
a centrally loaded beam if a correction for shear
deformation were not necessary. Equation(A63)
shows that the effective stiffness of a centrally
loaded strip of sandwich is equal to D divided
by 1+ h*/a® Consequently,

Effective stiffness= —DF

L (A65)
a!
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