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SOME REMARKS CONCERNING PERMUTATIONS ON SYMMETRY CLASSES

By M.H. Lim

1. Introduction

Let F be a field, G a subgroup of the symmetric group S,, and y :G—F
be a character of degree 1. Let V-, V  be finite dimensional vector spaces
over £ such that V=V, for =1,.-,m and for all ¢ €G. Let W be any vector

L
space over F. An wm-multilinear mapping f: X V,—W is said to be symmetric

1= :

with respect to G and x 1if

f(xﬂ-(l): "% xﬂ-(m))zxcg)fcxls **% xm)
for any ¢ € ¢ and arbitrary x; €V, A pair (P, ) consisting of a vector space

L
P over F' and an m-multilinear function y : _><1Vz-—+P, symmetric with respect to
=

G and y, is a symmetry class of tensors over V-,V _, associated with G and ¥

if the following universal factorization property is satisfied.

m

For any vector space U over F' and any m-multilinear function g : _Xl V,—U,
7=

symmetric with respect to G and 7y, there exists a unique linear mapping

h . P—U such that g=napu.

The symmetry class of tensors associated with G and yx always exists
and is unique up to vector space isomorphism (see [2], [4]). We denote
such a space by (V, ---,Vm)x(G). When V ,=--=V_=V, it is usually denoted by
V.(G) [2]. The decomposable element u(x;, . %, ), %, EV,, i=1,+-,m, is denoted
by xy%..--%x .

Let T, : V.,—V, be linear mappings such that Tz.:TJ(z.) for /=1, ----,m and all
o € G. Then there exists a unique linear mapping K(T'¢, ----, T,)on(V, -, V ) x(G)
such that K(T', ----,Tm)xl*----*xszlxl*-m*mem. It r,.--.,T, are nonsingular

and (V,, -, Vm)x(G) # {0} then clearly K(T, -, Tm)_‘lr—-K(Tlh'l, Tm_l). If
r=.-.-=T, =T, K(T,, ----,Tm) is usually denoted by K(T') [2]. |
Let B;={v;, ----,v;,} be bases of V,, 1<7<_m, such that for each 7,
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Vi, = Ya(i)s,
for all c€G, 1 <7, < dimV,. Let I" denote the set of all m-tuples a'=(a'1, ey &, )
where «; are positive integers such that 1 < ea, <dim V, i=1,...m I a&T,

cE G, let aa=(ag(1), g(m)). The group G induces an equlivalence relation
on [’ as follows: |

a= B if a’=pA for some o EG.
In each of the equivalence classes choose the m—tuple which is first in lexicographical

order and let 4 denote the resulting system of distinct represeptatives. For each
a & 4, let

Ga,= {aEG:aa=cx}

and let
d={oae€E 4. x(g)=1 for all JEGa}.

a < [’. Then it can be shown that
B={ * . a& 4]
forms a basis of (V,, *---,Vm)x(G) (see [1], [4]).

*-__ *Illl*
Let v *=v, . Ve

For each w & 4, let d(w) denote the number of distinct integers in w. Let
p=min{o(w) : w € 4}.

Let U be a finite dimensional vector space over F. A linear mapping g :U—
U 1s called a generalized permutation w.r.t. the basis #, .-,z of U if g(u,)=

ity ;y for some ¢ € S, and some non-zero scalars ¢;. g is called a permutation w.
r.t. the basis #,, .-, u, 1f ¢,=1 for all <.

Throughout this note we assume (Vl, ---',Vm)x(G) # {0} and let O, be the orbit

of & to which 7 belongs. Our purpose is to prove the following generalization of
Theorem 3 in [2].

THEOREM. Assume that dim V., >min{l|Ol,p} for i=1,.....,m or X=1. Then
K(T,, ....,Tm_} on V,, ""’Vm)x(G) 1S a generalized permutation w.r.t. the basis B
tf and only if T, is a generalized permutation w.r.i. the basis B. for each i.

COROLLARY. Suppose that X=1. Then K(T,,----, T ) on (V- Vm)x(G) S @

permutation w.r.t. the basis Bif and only if T,=A.P, where P, is a permutation

1=1

m
w.r.t. the basis B, for each i and I1 A,=1.

Let v, ----, v be an orthonormal basis of a unitary space V. In [2] Marcus
and Minc proved that if =1 and rank T>m, then K(T) is a permutation on
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V7(G) w.r.t. the orthonormal basis {( l|g Il )%”crl *oky ae‘Z} implies that
4 4

T'=AP where P is a permutation on V w.r.t. the orthonormal basis v, .-, and

2"=1. We remark that the hypothesis rank T°> m can be dropped.
2. Proof of the theorem

We first prove following generalization of the lemma in [2]

LEMMA 1. If X *eeFy = y, %y %0, then for each orbit O of G, {x,::& O}
and {y;: {0} span the same subspace.

PROOF. Suppose for some j & O, x; & <y; 1 i € 0>, the subspace spanned by
{y;:1€0}. Let T;: V.-V be a linear mapping such that
T ijj)ZO’ T]-I <x,.i{ & 0>=identity mapping.
If 20, let Tk:T}-. If k€0, let T, be the identity mapping on V,. Then
K(Ty o T Ox 2%t =K(T o T, ¥ 5w, o
This implies that 0=y,*.--*y_, a contraction. Therefore for any j € O, x; & <y
: & 0>, Similarly

<y, .1 €0>C<x, :i€0>.
Hence < y. it €0>= <x;:1€0> and the lemma is proved.

LEMMA 2. Let w & 4 such that v - #0. Let n; be permutations on {1, .---,dimV 4
SuCk tkat 723:??0'(3) for 3-=11 sev, I dﬂd fOT a‘ﬂ UEG- Tken (721(0)1_), ey ﬁmCa)m))._:_r‘
Jor some y € 4.

PROOF. Let n(w)=(n,(w,),----, 7, (w, )). By the hypothesis on 7, we see that
there are nonsingular linear mappings f; on V, such that f;=f,, for i=1, ..., m
and all 0 € G and
_ fi(ﬂz’m,):”@-m(wi), i=1, e, m.
Since K(fy, ----, f,) is nonsingular, it follows that
, K(fp -ooos Fp)05 =0, 520,
If n(w)=«a for some oo & A\4 then by Lemma 6.1 [4] vq(w)*=0, a contradiction..
Hence n(w) = y for some 7 € 4.

LEMMA 3. If K(T,,----,T,) is nonsingular then T .V —V is nonsingular for
z-""_.'ljlr R / /2

PROOF. Suppose T',(#;,)=0 for some nonzero vector #,, in V. For each 7=1, ...,

m, let D;={u,,----,u; } beabasis of V; such that %, ; =u;; for all c&(G where
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1< 7, <dimV,. Since (V, -, Vm)x(G) # {0}, 47 ¢. Let a & 4. Then u* £ 0. Let
7, be permutations on {l,----,dimV’;} such that »,=n . for all 7 and al rE G
and n,(a;)=1. By Lemma 2, n(a)=0n(ap), -~ n,(,)) =7y for y € 4 and hence
U,y 7 0. However,

K(T,, ----,Tm)uﬂ(a)*zo.
‘This contradicts the hypothesis that K(T',----,T,) is nonsingular. Hence T, is

nonsingular. Similarly T, is nonsingular for z > 2.

PROOF of the theorem (Necessity) Case (1) :dimV > min(IOz.],p). Let 6 be the
permutation on 4 such that for each a € 4

KT, Tm)va*z'/'tav@(a)*
for some nonzero scalar 4,. We shall show that for each 1 <j<dim V,,
T30y =401y
for some positive integer ¢(7). Let w €4 such that d(w)=p. Then v * 0. Let
[{w, ;€ 0} |=k. Then k<min (10;],p)<dim V,. For each 2<#¢<%+1 we are

able to choose permutations 772. on {l,..--,dim V., } such that

(D) 7;=1,; for all / and all cEG
-and

P

(i) (W) i €0} =(1, -2, - b+ 1}
Let nf(cu)'z(nrl(wl), '---,n;(wm)). By Lemma 2, nt(a))Ert- for some fEZ. Clearly
in; (w) i €0}=1{r; 1€ 0,}. Since
KTy oo T 0,7 =D Uy * # 0
1t follows from Lemma 1 that
<T@, i€0>= <Vigern, - ¢ € 01>
“T'his implies that

ON ..
<T1(Z}11), "t Tl(vlt)’ T T]_(U]_(;H_l))> — <v£9(yr)i = 01>'

Hence
E+1 k+1

t:nz<T1(”11)= 7/11%’1:% o0 Ty @y pq1y) > = rQ?‘,<Z’7:6(:r'=).f : 5501> .

Since T'; is nonsingular (Lemma 3), T (vyg)s = Tl(vl(k +1)) are linearly independent.

Hence the left hand of the above equality is <7,(v;;)>. This shows that
<T)(v)> = <01y

for some integer ¢(1). Similarly <T1(""1j)> =<v1¢(_,-)> for some integer (7).

Since T, is nonsingular, T, is a generalized permutation w.r.t. the basis 5.
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Similarly 7'; is a generalized permutation w.r.t. the basis B; for 7 >2.
Case (i1) : X=1. Since X =1, foreachr& 7, v,* € B. For each 1 <7 <{dim Vi,

let cor:(cui, ----,w;) such that cuz =tif¢ EOI, cu;- =1 if j%Ol. Since v, =B, it
follows that
KTy, -, T v, *=2, 0,5

for some /'im,e F and some o' € 4. By Lemma 1,
<T1("’1w;r) e 0 > = <vl - I &S 01>
= <Ty(v;)>.

Hence <T';(v;,)> = <y, ¢(t)> for some integer ¢(#). 'This implies that 7, is a
generalized permutation w.r.t. the basis B;. Similarly T, is a generalized
permutation w.r.t. the basis B; for 7 > 2.

(Sufficiency). Suppose that for each i=1,.-..,m, there is a permutation ¢, on
{1, ----,dimV 3} such that
| T(v ) 2 ”e(f) 1<j.<dim V;

for some nonzero scalars 2.. . Then for w € 4,

K(T . T )2) *_—H ZZGJ; ylel(&h) mem(mm) # O-

Hence Lemma 2 implies that (0, (wy, '___’am(wm)):_?,a for some y € 4 and some
0 & (. Hence

KTy, -, T, )v *= Qz_:lﬂjlllz-m')x(a)vr*.

Since K(T, ----, T, ) is nonsingular it is then clear that K(T,.-,T,) 1s a
generalized permutation w.r.t. the basis B. This proves the sufficiency.

PROOF of the corollary. The sufficiency is trivial. We prove the necessity.
In view of the theorem, for each 7, there exists ‘?53' = SdimV, such that

T (yy‘)'—'cz“vzé (JI)’ 1 _<__ jt g diIIl Vz:

tor some nonzero scalars ¢;;. For each 1 <¢<dim V,,

2.7 :;

KT - T )0y 0gy ™ Uy = A 201 At 14,6 Vap(1) ™ Umpal)”
Since ”lgél(t)*"'*”mé,.(l) € B, it tollows that
Al Aoy =1
Hence 4,,=4,, for any 1<¢<dim V. This proves that T,=4,,P, where P, is a
permutation w.r.t. the basis B;. Similarly we can show that T; =A.P, for some

m
scalar A; and some permutation P, w.r.t. the basis B, 7>2. Clearly 1‘[1 A;=1.
2=
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This completes the proof.

University of Malaya,
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