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DINI DERIVATES AND APPLICATIONS

By P. Ramankutty

0. Introduction

In advanced treatments of differentiability of real-valued functions of a real
variable the four Dini Derivates are introduced first and the questions of their
finiteness and equality are discussed subsequently. It is natural that in cases
where the underlying function is not necessarily differentiable the part of the
derivative could, to some extent, be successfully played by the derivates. This,
however, depends on knowing the extent to which the derivates resemble the
derivative when dealing with functions individually and in combination. This
note seeks to establish some elementary results in this context and concludes by
pointing out some less elementary applications of this calculus of the derivates.

In section 1 the standard definitions of the Dini Derivates are recalled (mainly
in order to fix the notation) and two preliminary lemmas are proved. Some
rules for the derivates analogous to the rules of differentiation are obtained in
section 2, the proofs being confined to pointing out the essential details. Zyg-
mund’s lemmas on the derivates and their consequences are quoted from [5] 1n
section 3 in order to make the discussion somewhat self-contained. These results
are stated in form and order different from those in [5] and although 1t is easy
to prove them in the order in which they are presented here, it is preferred to
omit the proofs. Finally three applications of the rules developed are provided in
section 4.

1. Notations and preliminaries

NOTATION 1.1. Let a,b be real numbers with a<é. If ¢ : (a,5] =R then m(p) *
(a,b] = [—o0,00) and M(p) : (a,b] »(—oo,o0] will be the functions defined by

m(p)(¢) =inf{p(x) : a<x <t}

and =
M(p)(#)=sup{p(x) : a<x<i}.
If f: [a,5)—R then F : (a, b8 —R will be the function defined by f(x)=(f(x)—

f(a))/(x—a) and D + f(a) and D" f(a) will denote the right-lower and right-upper
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Dini Derivates of f at ¢ defined by
D f(@=sup {m(f)@) : a<t<b}

and

DT f(a)=inf {(M(F)@) : a<t<b).

The left derivates D_f(b) and D f(b) at b are defined analogously.

It is clear that m(g) 1s a decreasing function, M(g) is an increasing function
and that m(p)<M(p).
Hence we have:

D, f(@)=lim m(F)(®). D*fl@)=lim M(F)®)

!la
Iand

D_f(@<D" f(a).

The derivation rules to be obtained in this note will usually be stated only for
the right-derivates since it should then be obvious that analogous results hold for
the left-derivates.

REMARK 1.2. Clearly, for a=0, m(ap)=am(p) and M(axp)=aM (¢p) while for
a<0, m{ap)=aM(p) and M(ap)=am(p). (It is understood that O-co=0-(—0o0)
=(0). These observations immediately yield: 1f a>0 then D(af)(e)=aDf(a)

where D denotes D L or D" while if a<0 then D +_Ccrf)(a):aD+f(a) and

_D+(af) (a) =aD . f(a). These are, however, particular cases of the more general

rules of derivation contained in

THEOREM 2.3. Before taking wup these rules it is mnecessary (o establish the
Jollowing lemmas regarding the funciionals m and M.

LEMMA 1.3, If ¢: (a,b] =R and ¢ : (a,b] =R then

€ m(p+d)=m(p) +m(P)
and
(i1) M(p+P)<M(p)+M(p). |
If either ¢ is bounded below or ¢ is bounded above then there also holds
(1ii) m(@~+@)=m(p)+M(P)<M(p+P).

PROOF. (1) and (ii) are clear. Using these and the Remark 1.2 above, we |
have: |

m(@) =m(p+¢d—P)=m(p+¢)+m(—¢) =m(p+d) —M(P)
and
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M) =M(p+¢—p)<M(@p+d)+M(—p)=M(p+¢) —m(p)

LEMMA 1.4. Let f: [a,b] =R, g: [a,b] —[0,o0) and suppose that g is conlinuous.
Then

lim m(fg)()=g(a)D , f(a) and lim M (78))=g(@)D™ f(a).

PROOF. For each &€ [a,b] let
A()=min {g(x) : a<x<{}
and
u()=max{g(x) : a<x<f{}.
Then 0<A(O)<g(x)<u(t) for each xE]a,f] and {1z, b and A®) | gla) and
() Lga) as tla. If F(x)>0 for each x&(a,t), then

AT (D<f(x)g)<pu@® fx) (D
for all x&(a,t) and hence taking infimum over all x&(e,?) we have
AOmFIBD<m(F g)(O=u®m(F)®) (2)
which on taking limits as ¢ | ¢ gives:
lim m(fg)t)=g(@)D_ fa). ‘ 3

If, on the other hand, f(x)<0 for some x&(a,t) let S,= x&(a,b) . Fx)<0}.
Since g(x)>0 for all #, iInf [F(egx) : x&(a, 1)} =inf {f (x)g(x) : x&S,} and so
too for inf{A(£)f(x)} and inf {u(t)f (x)}. For each xS, (1) will be replaced by

(1) in which the inequalities of (1) are reversed. Hence taking infimum over all
x&(a,t), (17) yields (2) in which the inequalities of (2) are reversed; taking
limits in (2°) as ¢ |l a we again get (3).

P

T'his proves the first half of the lemma. The second half is proved similarly

(or follows from the first half by replacing f by —f).

2. Rules of Derivation

THEOREM 2.1. Let f: [a,8] =R, g: [a,8] —R. Then
(i) D f@)+D, g@<D_ (f+2)(a)
(i) D™ f(@)+D" g@=D" (f+g)(a)
If either D, f(a) or D+g(cz) is finite then there also holds

(i) D, (f+2)@<D_ f(@+D"g(@)<D" (f+£)(a).

PROOF. Applying lemma 1.3 to the functions f and g, @) and @ii) follow im-
mediately. If D, f(a) is finite then there exists a number ¢&(a,b) such that

m(f) is bounded both above and _below on (a,c]. But then f is bounded below on
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(a,c] and part (iii) of lemma 1.3 applies io f and g restricted to (a,¢]. Thus

for each ¢ in (z,c], -
m(F+5)O<m(H)HO+MEO<M(f+g) (). On taking limits as #la, the
assertion (iii) above results. The case of a finite D+g(a) is similar.

COROLLARY 2.2, Let f: [a,b)—R, g: [a,0) =R and suppose that f or g has a
finite right-derivative at a. Then D(f+g)(e)=Df(a)+Dg(a) where D denotes D

+
or D .

PROOF. If g has a right derivative g .'(a) ata, then D_g(a)=D gla)=g_ (@)
From (1) and (ii1) of Theorem 2.1, we have:
D f@)+g ' (@<D_ (f+&)@<D_f(&)+g, (a) while from (ii) and (iii) of the

same theorem, D™ f(a) g,+’(a)2D+(f+g)(a)2D+f(a)+g+’(a).

THEOREM 2. 3. Lef f:la,b] =R, g: [a,bl—][0,00) and suppose that g is con-
timuous. If f(a)>=>0, then |
() g@D_f@+f@D, g@<D_(f2)(a)

(i) g@D™ f@)+f(@)D™ g(a)>D" (fg)(a) ;
if in addition one of D JS(@), D" g(a) is finite there holds also
(iii) D, (fe)(@)<g(@D  f(@)+f(@)D" g(@)<D" (fe)(@)

while if one of D+f(a), D g(a) is fimte there holds
(iv) D, (fe)(@<g(@)D" f(@)+Ff(a)D,g@<D" (f)(a.

If fla)<0 the above statements hold with f(a)D+ g(a) replaced by f(a)D +g(a) and
J(a)D_ g(a) replaced by f(@)D™ g(a).

PROOF. Set a=f(a) and suppose f(@)>0. From the identity E= fe+ag we

have, by 1.2 and 1.3 m(fg)zm(fg)+m(a§)=m(fg)+a'm(§r). Evaluating at &
(a,b) and taking limits as ¢ | @, it follows by lemma 1.4 that

D, fe)a)=g(aD f(e)+aD_ g(a).

This proves (i). Parts (1), (ii1), (iv) are proved similarly using appropriate
parts of 1.2, 1.3, 1.4 and resorting to the same kind of arguments as in the
proof of Theorem 2. 1(iii). The case of f(a) <0 follows by applying the results so

far established to the function —f.

COROLLARY 2.4. Let f: [a,b]—R, g: [a,b]—[0,0) and suppose that g s



Dini Derivates and Applications 207

continuous and that f or g has a finite right-derivative at a. If f(a)=0 then
D(fg)(@)=f(a)Dg(a) +g(a)Df(a) where D denotes D, or DT. If f(@)<O0 then
the same result holds with f(a)D +g(a) replaced by f(a) D+g(a) and f(a)D+g(a)
replaced by f(a)D +g(f1)- |

PROOF. Suppose f(a)>=0. If g has a fintte right—d'erivative g.'(a) at cz; then
D,g(@)=D"g@)=g, '(@). From (i) and (iii) of theorem 2.3,
g(@D_ f(@)+F(@)D,g@<D, (fe)([@<g(@D, f(@)+f@)D" g
=g(@D f(&+f(a)D, g(a)

This proves the result for D=D L Similarly for D=D" using (1) and (v) of
the theorem. If f has a finite right-derivative at a then the result follows from
(i), (iv) and (ii), (iii) of the theorem. The case of f(a) <0 follows from what

is already proved by applying the results to —f£.

LEMMA 2.5. Let g: [a,b] =R be continuous and suppose that g(x)7#0 for any x.
T hen

) DH(-L) (@ =—=1 - D
® D*(-L) @ oy D@
and
‘s 1 —1] +
(i) D (@ =—=2 D g
D 2,() @ =D e

PROOF. Either g(x)>0 for all x&[a,8] or g(x)<0 for all 2&[a,8]. Suppose
2(x)>0 for all x and let f= ng a=g(a). Now fg=1 gives gf+af=1=0 so that

M(H=M ( (11, gf)= ;Zm(gff). Evaluating at #&(q,b) and taking limits as

t | a, it follows from 1.4 that D™ f(a)=——-%-f(a)1) +&(a). This proves (1) ; (i) is
proved similarly. The case of g(x) <0 for all x follows by applying the results
to —g.

This lemma together with theorem 2.3 and corollary 2.4 yield quotient rules
for derivates which are stated in the following theorem and its corollary of
which the proofs are omitted.

THEOREM 2.6. Let f: [a, 0] =R, g [a,b] —=(0,o0) and suppose that g is conti-
nuous. I1f fla)=0 then |

(D (g(@D, f(@)~F@)D* g(@))/(g@)*<D, (f/g)(a)
(ii) (g@D"f(@~f(@D, g@)/(g@)*>D*(f/g)(@ ;
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2f in addition one of D +f(a), D g(a) is finite then there also holds
(i) D, (f/8)@=<(g@D, f()~f@)D,g@)/(g@)’<D" (f/2)(@
while if one of DT f(cz),D+g(a) 1S finite thern there also holds
(v) D, (F/)(@<(g@D" f&)~F(@D*g(@))/(g(@)’<D (f/)(@.
If f(a)<<XO the same results as above hold with f(a) D+g(a) replaced by f(a)D +g(cz)}

and f(@)D, g(a) replaced by f(@)D™ g(a).

COROLLARY 2.7. Let f: [a, ] >R, g: [a,b] —(0,00) and suppose that g is
continuous and that f or g has a finite right-derivative at a. If f(@)<<0 then

D(f/g)(a)=(g(@)Df(a)—f(@)Dg(a))/(g(a))* where D denotes D, or D*. If f(@)
>0 then the same result holds with f(a)D+g(a) replaced by f(a)D, g(a) and f(a)
D_g(a) replaced by f(a)D+g(a).

3. Zygmund’s lemmas

Throughout this section f is a continuous real-valued function defined on an
interval J of the real line and 7 denotes the interior of this interval.

LEMMA 3.1. If a<R is such that D +f(x)_§a' for all x&I (resp. D f(x)<a for
o all x&1) then for all a,b in J with a<b, there holds f(b)—fla)<a(b—a).

LEMMA - 3.2. If a&ER s such that D" f()>a for all x&I (resp. D f(x)>a for
all x1) then for all a,b in | with a<b, there holds f(b)—f(a)=a(b—a).

COROLLARY 3.3. If f is increasing on | then D +f(x)20 and D_f(x)>0 for
each x&1 ; conversely if D+f(x)20 for each x&I or D f(x)>0 for each x1, then

[ is increasing on J.

COROLLARY 3.4. If f is decreasing on | then D"’f(x)SO and D f(x)<<0 for
each x&1: comversely if D, ()0 for each x=I or D_f(x)<<0 for each x1I,

then [ is decreasing on J.

COROLLARY 3.5. Let o, 3 be elements of [—oo,00]. If ome of the four Dini
Derivates Df of f satisfies aDf(x)<fB for all x&I, ther all the four do.

4. Applications
A. Nagumo’s Uniqueness theorem.

A complete statement of this result is as follows.
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THEOREM. Let a,b be positive numbers, zOER’ xDER" and D= {{, x)ERX R :

t—t)1<a, lx—xI<b}. If f:D-R" satisfies |ft, x)—fE.t—t,|<|x—yl for
all (¢,x) (L,y), tn D then the initial value problem "
¥ (D=1 2(1)), x(t)=1,

has at most one solution on any interval containing i,

The usual method of proof [1] is to replace the initial value problem by an
integral equation and appeal to a functional inequality resembling some form of
a Gronwall’s lemma. Although this i1s justied even when f is not assumed to be
continuous, the following is an alternative favoured in [5].

PROQF. Let x,y be solutions on [{,—a, t,+p5] where 0<a<ae, 0<5<a and

define g : [0, 8] —[0,00) by g(®)=|lx(t;+8 —y(Ey,+I. Then for s,¢ in [0, 8] with
SHL, |

2 =g | o || #tD—xy+D)  yty+)—y(ty+D

s—i o s—1 s—1¢ I.
so that for each t&(0,58), |Dg() |_<__le"(z‘0—l-t) -y’ (¢y+2)|| where Dg denotes any
of the Dini Derivates of g. But

18 G+ )~ (ot O =1 FCtg+t, xCg+D) =g+t 3C+D)I
<~ 5ty +8) — 3ty +DI =g (D)/8
Hence we have Dg(z‘)gg(t—)/t which gives
D(g(1)/) =~ Dg(t)—~jr&(®) = = (Dg(®) —g (/0.

This shows that g()/¢ is a decreasing function and hence g(t)/t:i%i% g/t

=D" g(0). But again,

|D* g(O| <l (1)~ U =17 £ D) =t D
= ”f(to: x()) -f(tgs -1'0) | =0,

Thus g(£)/t<<0 which gives g(®)=0 for all ¢=(0,8). Consequently, x=y on
(25, t,+B) and by continuity this equality holds on [y, ¢)-+5] : a similar argument
applies to the interval [{,—a,i,].

B. Lyapunov’s second instability theorem.

Consider again the differential system x’(?)=f{,x(t)) where f: [0,00)XB(7)
—R" is continuous with f( 0)=0 for all £=0, B(#) being the open ball of
radius 7 around the origin in R”. For W : [0, o)X B(e)—R where 0<e<r, define
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W 2 [0,00)X B(e)— [—o0,00] by _
. W %) :E@ —%Z—CW(t+k,x+kf(t, ) =W, %)) ;

call the function W locally Lipschitzian iff for each (¢, x)&[0,c0)XB(e) there
exists a number X >0 and a neighbourhood N of (¢, x) such that |[W(s,y)—~W(s,2)]

<Kly—z| for all (s,y), (s,z) in N. It can be shown that if W 1s locallz Lipsch-
itzian and x : [0,o0)—R" is a solution of the differential system with |x(®)]<e
for all 20 then W(z‘,x(r))=D+V(t) where V(&) =W (¢, x(D)).

One version of the second instability theorem may now be stated thus.

"THEOREM 4.1. If there exists a bounded locally Lipschitzian W . [0, 00) X B(e)—R,
(0<e<y) and a continuous A . [0, 00)— [0, 00) with f A dt=o00 such that

: 0
() WG, x)=>AW (&, x) for all (f x) tn [0, c0) X B(e)

(ii) for each 0>0 there exists x ER with x| <0 and W (O, x0)>0 then the
“zero-solution” i1s unstable. '

NOTE. In the usual version [3] the local Lipschitzian hypothesis is replaced
- by the much stronger requirement of Frechet differentiability. |
However, the following proof does not require W to be Frechet differentiable)

PROOF. Suppose that the zero solution is stable. Choose 0&(0, 7) such that

each solution x with ||x(0)||<d is defined for all £=0 and satisfies [[x(¢)] <e for
all £=0. Now choose a point .1:0615{“'z such that (ii) holds. Let x be the solution of
the initial value problem z'(¢)=f{, (), x(0)=x, Now x is defined for all =0

. ¢
and x| <e for all £0. Writing p(?)=exp (— f 2(3)ds) we have,

D (W (t, 5D =uOD W (t, 2(2)) - z(rmcowa £())
=)W, x(D) — AW, x())=>0 by (D).
Therefore, u(H)W(, x(t)) is an increasing function of £and hence for all >0,

u(OW (¢, x(t))>#(0)W(0 2(0)) = W(O x,)

S0 that W (t, x(t))>W(O x) exp ( j 1(3)d3> Since
W (0,£,)>0 and f (s)ds =00,
0

W(0,xy) exp ( f Z(s)ds)——*m as t—oo, Hence it follows that W (%, x(¢))—oco as
| 5 a o
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}—oo and this contradicts the boundedness of W. The proof is complete.

C. Subadditive functions.

One of the results in [2] regarding the differentiability and growth properties
of a subadditive function f: R—R states that if sup{f{#)/f{: t>0}=B and
inf{ f(£)/t : t<0}=A then DT f($)<B, D f(H)<B, ,D+f(z‘)>_f-A and D f(i)>A for |
all #;if A and B are finite then f is absolutely continuous and if further 4 and B
are equal then f(¢)=At¢ for all £. Nothing has been stated in this context regard-
ing the growth properties of f in case 4 and B are finite but unequal (and hence
necessarily —oco<{A<B<o0), However, the following result readily holds.

THEOREM 4.2. If f: R——>R IS Isﬁbaddftz've and if A=inf{f(¢)/t :t<0} and B=
sup{f()/t : £>0} are finite then
At<f() Bt for t=0 and Bi<f()<Al for t<0.

PROOF. From the results mentioned above, f is continuous and hence D™ ( f(#)
—tB)=D+f(t)—B£O for {0 so that f(#)—tB 1s decreasing on [0,cc). Hence
f(&)—tB<f(0) for t=0. This gives f(#)<tB for =0 since f(0)=0 by theorem
7.11.1 of (2]. The remaining ineqalities are proved similarly.

Another result of [2] states that if f:(0,00)—R is such that f(@)/¢ is a
decreasing function of # then f is subadditive. Using this Rathore [4] shows that if

f: (a,00)—R is differentiable where ¢=>0 and if xf’(x) <Sf(x) for all x in (g, o)
then f is subadditive. However, these hypotheses on f imposed in [4] are too
restrictive; it is just as easy to prove the following.

THEOREM 4.3. Let a=0 and [ (a,o)—R. If xD SO f(x) for all x in
(a,00) or xD_f(x)<f(x) for all x in (a,o) then f is subadditive.

PROOF. Suppose zxp +f(x)£f(x) for all x in (@, o). Then D + (f(x)/%)
=-%g-(xD J@)—f(x))<0 and hence f(x)/x is decreasing; similarly for

xD_f(2)=f(x).

University of Auckland,
New Zealand.
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