
Kyungpool‘ Math. J. 
Volume 14, Number 1 
]une, 1974 

COMPLETIONS OF TOPOLOGICAL VECTOR SP ACES 

By Ray F. Snipes 

Let (X, ‘r) be a topological vector space over the real or complex field K. A 

fiIter base ‘Y ’ in X is said to converge to a point a in X , written .f’-• a, if 

given any neighborhood V of the zero vector 0 in X , there exists a set N in 

‘ff such that NCa+V= {a+x: xεV}. A filter base f in X is said to be a Cauchy 

filter base if given any nei 5:hborhood V of the zero vector 0 in X , there exists 

a set N in .f‘ such that N-N={x-y: x, yεN} CV. The topological vector space 

(X , ‘r) is comþlete if and only if every Cauchy filter base in X converges to 

a point in X. It is of course well.known that every Hausdorff topological vector 

space (X, ‘r) is isomorphic to a dense subspace (Xd , Y"iXd ) of a complete 

Hausdorff topological vector space (X, ,Y'); and that the space (X, ,Y'), called 

the coηφletioη of (X , ‘r) , is uniquely determined up to an isomorphism. 

The usual constructions of 때，，Y') define X as the set of all equivalence 

classes of Cauchy filters in X ([1] , pp. 131 134; or [4] , pp.37 49) or as the 

set of all equivalence classes of Cauchy nets ([2] , pp.33 35 and pp.148 149) 

into X. In this note, we give a somewhat simplier construction of the completion 

(X， 3η of a HausdOrff topo1ogicaI vector space (X, 7) defining t as the set 

of all equivalence classes of Cauchy filter bases in X. 

Using this construction, a comparison of linear spaces obtai:1ed as completion~ 

of a linear space under different Hausdorff vector topologies is made. Two filter 

conditions are stated which facilitate such a comparison. One of these is the 

filter condition introduced by 、1V. ROJertson ([3]). 

1. Construction of the completion of a Hausdorff topological vector space. 

Given a Hausdorff topological vector space (X, ‘r) , two filter bases ι/‘ and 
y 

.A' in X are said to be equivalent, written ‘/‘ ----.A', if given any neighborhooò. 

V of the zero vector 0 in X , there exist sets N in ι/’ and M in ‘~ such that 

N-M={x-y:xεN and yεM} CV. The relation '" is an equivalence relation 

on the set of a1I Cauchy fihet- bases in X ; and the set k is defined to be the 

set of all equivalence classes of Cauchy filter bases in X. The equivalence c\ass. 



114 t(ι:y F. SI1샤 es 

<e1enlent of k) with representative the Cauchy fi1ter base X ‘ is denoted by [f]. 

Thus we write [‘f] = {.Af' :.Af' is a Cauchy filter base in Xand χξ f}. 

The sum of two filter bases ...4"‘ and ‘-4' in X is the filter base J'‘+.Af'= {N+ 

M:Nειγ andMε.Af'} where, as usual, N+M= {x+y: xεNandyεM). Clearly, 
Y . ._ .. Y 

if ‘f - ,:/ and ‘.A'-• !J, we have ‘/‘+‘Æ- • .1 + b. Also, if ‘/‘ and ‘Æ are 

Cauchy; their sum ‘/‘+‘4 is Cauchy. This enab1es us to define addition + : X×￡ 
• X by the correspondence [f] + [.Af'] = [‘f+ ‘Æ] for all [νr] and [.Af'] in X. 

The product of a scalar α in K and a filter base ‘/’ in X is the filter base 
Y 

αf={αN:NE‘//'} where αN={αx:xεN}. If f - '2, thea α‘f-→αa. If 

J ‘ is Cauchy, then αι/‘ is Cauchy. Thus we define scalar multiplication 

r : K×￡--→X by the correspondence α. [f1 =α[...4"’]=[αj‘] for all α in K 

and all [ι~] in X. 

With addition and sca1ar multipIication SO defined, X is a 1meal- space over 

K. The zero vector in k is the equivalence c1ass [ { {0} } ] where O is the zero 

vector in X. If [‘/] is an element of X, its additive inverse is - [X‘ J=[­

.JJ where -f= {-N: Nεf} and -N= {-x: xεN}. 

If oc is a local base for the vector topology ‘:r, then ..r is the unique vector 

topology on ￡ determined by the 1ocal base Z= {i : Lε4} where i= { [ιγ] εX: 

given any neighborhood V of 0 in X , there exists a set Nεf‘ such that NCL 

+ V} for each L in oC. 

With k and ‘7' thus defined, (X’ ‘7') is a complete Hausdorff topological 

vector space. The set X d = {[ {{x}} J : xεX} is a dense subset of X ; and the func­

tion i: X ,X d ' defined by the correspondence i(x) = [{{x}}] for all xεX， is an 

isomorphism on (X , Y) onto (Xd ' YIXd ). The space (X, ..r), which is 

uniquely determined up to an isomorphism, is the completion of (X, ‘r). 
1n the interest of conciseness, proofs of the above results are omitted. They 

.are similar to those given by J. Horváth ([IJ , pp.131 134) and F. Treves 

-( [41 , pp. 37 49). The advantages of using equivalence classes of Cauchy filter 

bases rather than equivalence classes of Cauchy filters are indicated by the 

;above definitions (especially that of addition) and by the following remarks: 

(1) If aεX: then {{a}} is a filter base in X which converges to a and z.(이 

= [ { {a} } ] is the equiva1ence cIass (element of k) consisting of alI the Cauchy 

filter bases in X which converge to a. 

; 
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(2) If f is a Cauchy filter base in X , i. e. , if [fl εk ; then z-(‘ f)= 
{i(N) : Nε4기}， where i(N) = {z"(x) : xεN} ， is a Cauchy filter base in X d such 

that i(f)二-→ [ν/‘1. 

(3) If AζX and [f] ek ; then [Y] g갔낌 if and only if there exists a 

Cauchy filter base ‘Æ in A such that ..Æξ‘，r or [‘Æl =[ιrl. 
lncidently, if ψ :x-• R is a continuous semi-norm on X then poi-1 

: Xd ,R is 

a continuous semi-norm on X d which has a unique (uniformly) continuous 

extension j : X-• R to k. Using our construction of f , we see that & : X-• R 

is given by p( [....f'‘]) = lim p(x) for all [ιf"l εX. lf (X , Y) is a Hausdorff locally 
x’‘/ 

convex topological vector space with vector topology ‘r generated by the non-

empty family of semi-norms ‘f7; then (X, Y) is a Hausdorff locally convex 

top이ogical vector space with vector topology ‘중 generated by the non-empty 

family of semi-norms {Þ: pε‘f7} • 

lff:X-• X is uniformly continuous (or, more generally, Cauchy-regular in 

the sense that f preserves Cauchy filter bases): then the function fd : X d- • X d 
defined by fd=z.ofoi-1 is uniformly continuous (or Cauchy-regular) and has a 

unique uniformly continuous (or Cauchy-regular) extension by continuity to a 

function f : k-→￡. If f is 1inear, then f is 1inear- Using our construction, 
J: X-• k is given by f( [X] ) = [f(X’ )1 for all [fl EX. 

2. The f i1ter conditions. 

Let X be a linear space over the real or complex field K. Let .3í and ..5갚 

be two Hausdorff vector topologies on X such that 칸C걷. Let (훤， 적) be 

the completion of (X,.3í) with (X , 적) being isomorphic to the dense subspace 

(Xd" 적 X d) of (X1' 칸) under the isomorphism i1 : X-• X d,' Let (X2, 캉) 
be the completion of (X, 킹) with (X, 킹) being isomorphic to the dense 

subspace (Xd,’ 껴lXd2) of (X2, 정 under the isomorphism z.2 : X-• X d; The 

function i: X d,-• X d,' defined by i=i1oi2- 1, is a 갱， 끽-continuous algebraic 

isomorphism on X d, onto X d‘. Le터 : k2 -껴 be the unique 캉， 껴-continuous 
extension of t to ￡2· Clear1y, ; is 1inear and uniformly continuous. 

THEOREM 1. The f;μ%ctt0% ; z·s 1-1 27 %d 0%ly f the fblloμ，쩌:g filter conditz"on 

(see [31 , p.244) holds: 

(A) lf J ‘ z·s a 쭈-Caμchy filter base in X and if f is 칸-convergent to 0, 

then f is 킹-convergent to O. 

\ ‘ 
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PROOF. Assume that the filter condition (A) holds. We must show that z' is 

1 1, or equivalently, thaf ker i=r\ {[ {{O}} )1})= {[ {{O}} )2}. Let [J꾀ε ker ;‘ 
i. e. , 1et [Z] 2g￡2 such that 갔 [/)2) = [ {{O} } )1' By (2) , we see that / is 

a .92" -Cauchy filter base in X and 션(/) is a 캉-Cauchy filter base in X d , 

such that z'2(‘,4/') is yz -convergent to [‘f)2' Since z' is continuous, z' (z'강X‘)) is 

캄-convergent to i ( [/)2)' But 짜(/))=z'//); and i([/)2)= [{{이 } )1' 

Thus z'1(J‘) is 끽-convergent to [{ {O} } )1' Since z'1-1 is continuous, / is 칸­
convergent to O. By the filter condition (A) , we see that / is .92" -convergent 

to O. Thus, by (1), we have [‘/‘)2= [{ {O} }]2' Thus i is 1 1. 

Converse1y, assume that ; is 1-1. 117e must show that the filter condition 

(A) holds. Let / be a 걷-Cauchy filter base in X such that / is 껴-conver­

gent to O. Then z'2(/) is a 정-Cauchy filter base in X d. which is 추conver­
gent to [‘/객 where [/)2ε￡2· Since Z is continuous, ;(tr2(‘/‘)) is 낀-convergent 

to i ([/)2)' Thus z'/‘/‘) is 져-convergent to ;( [f] 2). Since z-l is continuous, 

i 1 (‘/‘) is also 캉-convergent to [ {{O}} )1' Since 댁， 적) is Hausdorff, 
i([..#"') 2) = [ {{O}}) 1 or [..#"')2ε ker ; whence [X객= [{ {O} } )2' Thus..#'" is 견­

convergent to O. This proves that the filter condition (A) holds. 

THEOREM 2. T he fiμnc!z'on i z's onto X 1 zj and only zj the follow z'ng jz'lter 

condz'tz'on hol ds: 

(B) Gz'ven any 져-Caμchy jz'lter base J ‘ z'n X , there exz'sts a 걷-Caμchy j z'lter 

base ‘A' z'n X such that 1 상 jT-eqztz·νalent to /. 

PROOF. Assume that the filter condition (B) holds. We must show that i is 

onto X
1
• Let [..#"')1εX1 • Then J ‘ is a 칸-Cauchy filter base in X. By the 

filter condition (B) , there exists a .92" -Cauchy filter base ‘,k' in X such that 

χ is 걷-equivalent to f. 1Ve will show that ;( [X] 2) = [Z] l· C1ear1y, 

[/)1 = [1)1' Since ‘~ is a 쪽-Cauchy filter base in X , the set 김(1) is a 

캉-Cauchy filter base in X d, which is 캉-convergent to [χ) 2' Also, since i 
is continuous, ;(zXX?) is 끽 -convergent to 2( [X] 2) whence z·l(χ) is 낀-

convergent to 갔 [χ] 강. But 1 is a 적-Cauchy filter base in X; so i1 (1) is 

a 캄-Cauchy filter .base in Xdi which is 컨-convergent to [‘4] l· Since (kl’ 

jT) is Hausdo냥f， we have ;[ [‘..#')2) = [‘4] 1 = [Z] l· This proves that ; is onto 

X1' 

Conversely, assume that i is onto X1• We must show that filter condition (B) 
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holds. Let / be a 껴-Cauchy filter base in X. Then [/1 1 E한. Since z is 

onto fl , there exists a point [‘.-#'1 2 in 확 such that i ( [.Ã'12) = [ν/‘ 1 1 . Clearly. 

‘.-#' is a 킹-Cauchy filter base in X. We must show that .Ã' is 껴-equivalent 

to /. Since ‘.R is a yz -Cauchy filter base in X. the set Z"2ι.R) is a Yz­
Cauchy filter base in X

d
, which is 캉-convergent to [χ1 2. Since i is contin­

uous, since ;(z“‘.-#'))=i1( ‘4), and since z-( [Jt] 2) = [ν/‘ 1 1 ; the filter base 

i
1
( .Ã') is 져-convergent to [/1 1. Also. since / is a ..9í -Cauchy filter base in 

X; the fi1ter base i tC/) in X d, is 끽 convergent to [/]1. Thus Z"1 ( ‘.-#') and 

z"//) are 깐-equivalent. Since zOl-1 is uniformly continuous, .Ã' is ..9í­
equivalent to f ‘. This proves that filter condition (B) holds. 

If filter condition (A) holds, the linear space X2 is algebraical1y 1somorphic to 

a linear subspace of the linear space X 1 ; and of course the set X 2 is equipotent 

to a subset of the set k1, written X25kl· If fi1ter conditions (A) and (B) hold, 

the linear space ￡2 is a1gebmica1ly isomorphic to the linear space kl ; and the 

set X2 is equipotent to the set kl, written k2~k1· Finally, if filter condition 

(A) holds and filter condition (B) does not hold, the linear space X 2 is algebra­

ica1Iy isomorphic to a proper linear subspace of the linear space Xl ; and the set 

t2 is equipotent to a proper subset of the set k1 , written k2<kl· 
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