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COMPLETIONS OF TOPOLOGICAL VECTOR SPACES

By Ray F. Snipes

Let (X, .9) be a topological vector space over the real or complex field K. A
filter base .4 in X 1is sald to converge to a point ¢ 1In X, wrltten 4/ —a, if

given any neighborhood V' of the zero vector 0 in X, there exists a set N in
4" such that NCa+V={e+x:x&V}. Alilter base # in X is said to be a Cauchy
filter base if given any neizhborhood V' of the zero vector 0 in X, there exists
9 set N in 4 such that N—N={x—y . x, y&N}CV. The topological vector space
(X, 9 ) is complete if and only if every Cauchy filter base in X converges to
a point in X. It is of course well-known that every Hausdorff topological vector
space (X,.7 ) is isomorphic to a dense subspace (X d,ﬁ" | X)) of a complete
Hausdorff topological vector space (X, 7)) : and that the space (X, .97), called
the completion of (X, .77 ), is uniquely determined up to an isomorphism.

The usual constructions of (X, .97) define X as the set of all equlvalence:
classes of Cauchy filters in X ([1], pp. 131—134; or [4], pp.37—49) or as the
set of all equivalence classes of Cauchy nets (2], pp.33—35 and pp.148—149)
into X. In this note, we give a somewhat simplier construction of the completion
(X, .97) of a Hausdorff topological vector space (X, .7) defining X as the set
of all equivalence classes of Cauchy filter bases in X.

Using this construction, a comparison of linear spaces obtained as completions
of a linear space under different Hausdorff vector topologies is made. Two {ilter
conditions are stated which facilitate such a comparison. One of these is the:
filter condition introduced by W. Robertson ([3]).

1. Construction of the completion of a Hausdorff topological vecter space.

Given a Hausdorff topological vector space (X, ), two filter bases .#~ and
A in X are said to be equivalent, written .#~ {/ , if given any neighborhood
V of the zero vector 0 in X, there exist sets N in .# and M in .# such that
N—-M={x—y:xEN and yeM}CV. The relation ~ is an <equivalence relation
on the set of all Cauchy filter bases in X ; and the set X is defined to be the-
set of all equivalence classes of Cauchy filter bases in X. The equivalence class.
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(element of X) with representative the Cauchy filter base .#” is denoted by [.#7].
Thus we write [A# | ={# . .# is a Cauchy filter base in X and .# Z v ay

The sum of two filter bases .#  and .# in X is the filter base .# +.# = {N +

M : N&e s and M&#} where, as usual, N+-M={x+y: xEN and y&M}. Clearly,

!
it g and -2 b we bave A+ ——1+b Also, if 4 and A are

Cauchy; their sum 4+ is Cauchy. This enables us to define addition + : XxX
—— X by the correspondence [A#"]+ [#]=[AF" +.#] for all [#"] and [.#] in X.

The product of a scalar ¢« in K and a filter base .#~ in X is the filter base
at ={aN . NE#"} where aoN={ax : x&N}. If # jﬁ#..:, then a#" ~ oq.  If
" is Cauchy, then a.#" is Cauchy. Thus we define scalar multiplication
. ¢ KXX—X by the correspondence a-[A"|=a[#"] =[as") for all « in K
and all [.#7] in X.

With addition and scalar multiplication so defined, X is a linear space over
K. The zero vector in X is the equivalence class [{{0}}] where 0 is the zero
vector in X. If [.#] is an element of X, its additive inverse is — [A#"] = [~
247 where — /" ={—N . N&ES} and —N={—x . xEN].

If £ is a local base for the vector topology .-, then .9~ is the unique vector
topology on X determined by the local base £L={L : L} where L={[#1€X :

given any neichborhood V of 0 in X, there exists a set N&.# such that NCL
+V} for each L 1n /£.

With X and .7~ thus defined, (X, .97) is a complete Hausdorff topological
vector space. The set X = {[{{x}}] : x&€X} is a dense subset of X ; and the func-
tionz: X— X, defined by the correspondence /(x)=[{{x}}] for all x&EX, 1s an
isomorphism on (X, .7 ) onto (X, I 11X ). The space (X, .97), which is
uniquely determined up to an isomorphism, is the completion of (X, .9 ).

In the interest of conciseness, proofs of the above results are omitted. They
.are similar to those given by J. Horvath ([1], pp.131—134) and F. Treves
([4], pp. 37—49). The advantages of using equivalence classes of Cauchy filter
bases rather than equivalence classes of Cauchy filters are indicated by the
above definitions (especially that of addition) and by the following remarks:

(1) If a&X: then {{a}} is a filter base in X which converges to ¢ and 7(a)
=[{{a}}] 1s the equivalence class (element of X) consisting of all the Cauchy
filter bases in X which converge to a.
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(2) If #" is a Cauchy filter base in X, ie., if [#1EX: then i(A)=

{i{(N) : Nes}, where i(N)={i(x) : x&EN}, 1s a Cauchy filter base in X , such

that 7(.#") ll [ A,

(3 If ACX and [ A j&X : then [#1€i(A) if and only if there exists a
T
Cauchy filter base # in A such that #~.# or [#)=[F"].

Incidently, if p : X—R is a continuous semi-norm on X then poi ' : X ,——R is

a continuous semi-norm on X, which has a unique (uniformly) continuous

extension p : X——R to X. Using our construction of X, we see that p : X— R
is given by p([A"]) = 1iJn} p(x) for all [(#1€X. If (X,.9) is a Hausdorff locally

convex topological vector space with vector topology & generated by the non-
empty family of semi-norms .# : then (X,.97) is a Hausdorff locally convex

topological vector space with vector topology g generated by the non-empty
family of semi-norms {P :PEZ}.

If F: X—>X is uniformly continuous (or, more generally, Cauchy-regular in
the sense that f preserves Cauchy filter bases) ; then the function f, ! X X,

defined by f,=io faz'_l is uniformly continuous (or Cauchy-regular) and has a

unique uniformly continuous (or Cauchy-regular) extension by continuity to a
function f : X—X. If f 1s linear, then f is linear. Using our construction,

A

f: X —X is given by fF([AD)=[f(A)] for all [#EX.

2. The filter condifions.

Let X be a linear space over the real or complex field K. Let .77 and %
be two Hausdorff vector topologies on X such that [C.% . Let (X ’ Jff ) be
the completion of (X, .97) with (X,.%;) being isomorphic to the dense subspace
(X,, 71X ) of (X " 7)) under the isomorphism 7, : X—X 4 Let (X0 95
be the completion of (X, %) with (X, %) being isomorphic to the dense
subspace (X, S | X,) of (X,, %) under the isomorphism it X—X,. 'The
function ¢: X, — X, , defined by 7=70/,~1, 1s a S5, Jf-continuous algebraic
isomorphism on X, onto X,. Let : : }?2————1-}? ; be the unique 9;, 9 -continuous

extension of 7 to X,. Clearly, ¢ is linear and uniformly continuous.

THEOREM 1. The function i is 1—1 if and only if the falloiwz'ng filter condition
(see [3],p.244) holds:
(A) If A is a % -Cauchy filter base in X and if A~ is F|-convergent to O,
then A~ is F5 ~convergent to O.
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PROOF. Assume that the filter condition (A) holds. We must show that ; is
1—1, or equivalently, that ker ;:;—1({[{{0}}]1})={[{{0}}]2}' Let [#7] & ker :.
e., let [#1,€X, such that i([#"]1,)=[{{0}}],. By (2), we see that ./ is
a % —Cauchy filter base in X and 2'2(/!" ) is a j{—Cauchy filter base in X J.
such that 7,(#") is .9 -convergent to [.#"],. Since? is continuous, z(Z,(A#7)) is
7 -convergent to i([A")). But z(i(A))=i (A and i([A7],)=[{{0}}];.
Thus z'l(./f/' ) 1S ji' —-convergent to [{{O}}]l. Since z'l_l iS continuous, #~ 1S 9] -
convergent to 0. By the filter condition (A), we see that /" is % -convergent
to 0. Thus, by (1), we have [A#"],= [{{0}}],. Thus 7 is 1—L.

Conversely, assume that 7z is 1—1. We must show that the filter condition

(A) holds. Let .#" be a % -Cauchy filter base in X such that .#" is 9] -conver-
gent to 0. Then 7,(#") is a 7 -Cauchy filter base in X ;. which 1s -, ~conver-

gent to [A#7], where [A7] 2EX’ 5 SINCE ; is continuous, 2 (o (A" )‘) is YT ~convergent
to 1([A }o). Thus z'l(./ ) 1S j‘f ~convergent to ([ A" ],). Since Z; is continuous,
i, (A7) 18 also ﬁf ~convergent to [{{O}}];. Since ()?1, Jﬁf ) is Hausdorff,
i([A#7],)=[{{0}}]; or [#"],E ker 7 whence [#"],=[{{0}}],. Thus A is % -
convergent to 0. This proves that the filter condition (A) holds.

THEOREM 2. The function i is onto X 1 tf and omnly if the following filter
condition holds:
(B) Given any 97 -Cauchy filter base #" in X, there exists a F ~Cauchy filter
base A in X such that A& is F]-equivalent to .

PROOF. Assume that the filter condition (B) holds. We must show that 7 is
onto X,. Let [#7] IEX’ i+ Then #" is a 9;-Cauchy filter base in X. By the
filter condition (B), there exists a % -Cauchy filter base .# in X such that
A 15 J{-equivalent to . We will show that ([ M lo) = [A#7],. Clearly,
(A7) =[A],. Since A& is a F -Cauchy f{ilter base in X, the set 7,(A#) is a
5 -Cauchy filter basein X ¢, Which is 9, -convergent to [.A] » Also, since ¢
is continuous, 2(Z,()) is j’f ~convergent to z([.# ],) whence #,(A#£) is FT —
convergent to z([.#] ). But & is a F]-Cauchy filter base in X i so 7, (#) is
a 9;-Cauchy filter base in X 4 Which is I -convergent to [.#],. Since (X s
f}") is Hausdorff, we have 7([.# 1,)=[#],=[4#"],. This proves that : is onto
X;.

Conversely, assume that z is onto X ,» We must show that filter condition (B)
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L

holds. Let .#" be a .9;-Cauchy filter base in X. Then [#7],EX,. Since 7 is
onto ffl, there exists a point [.#], In }?2 such that f([/]2)= (A1 Clearly,
A is a F -Cauchy filter base in X. We must show that .# is 9] -equivalent
to A . Since # is a 9 -Cauchy filter base in X, the set i,(#) isa % -
Cauchy filter base in X d, which Is 2‘ —convergeﬁt to [ A Joe Since ¢ is contin-
uous, since 5(2'2(/))::3'1(/), and since 5([/]2)=[/]1 : the filter base
z'l(/ ) 1S j{ -convergent to [#7],. Also, since A" is a 9] -Cauchy filter base in

X i the filter base 7)(#7) In X, 1Is 97 -convergent to [A#7],. Thus 7 (#) and

. - . . =1 . : : :
. (A7) are 9] -equivalent. Since #; = is uniformly continuous, # is |-

equivalent to .#°. This proves that filter condition (B) holds.

If filter condition (A) holds, the linear space X , 1s algebraically isomorphic to

ol
A

a linear subspace of the linear space X , + and of course the set X, is equipotent
to a subset of the set X [» Written ngf i If filter conditions (A) and (B) hold,

the linear space }?2 1s algebraically isomorphic to the linear space X .+ and the

set X, 1s equipotent to the set X (» Wwritten J?zw)f - Fmally, it filter condition

A

(A) holds and filter condition (B) does not hold, the linear space X, is algebra-

ically isomorphic to a proper linear subspace of the linear space X % and the set

A

X, is equipotent to a proper subset of the set X {» written )?2<)? [*
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