Kyungpook Math. J.
Volume 14, Number 1
June, 1974

A NOTE ON BLOCK CIRCULANT MATRICES

By Chong-Yun Chao*

The purpose of this note is to present a simple proof for the main theorem in [3]. Our method is similar to the one used in [1].
Let $C=\left(c_{i j}\right)$ be a $n \times n$ circulant with $c_{i j}$ belonging to the complex number field K, and $i, j=0,1, \cdots, n-1$. Let $f(x)=\sum_{j=0}^{n-1} c_{0 j} x^{j}$. It is well known that the eig. envalues of C are $\mu_{k}=f\left(\omega^{k}\right), k=0,1, \cdots, n-1$, and the eigenvector corresponding to each μ_{k} is a column vector $\left\{\omega^{0}, \omega^{k}, \omega^{2 k}, \cdots, \omega^{(n-1) k}\right\}$ for $k=0,1, \cdots, n-1$ where $\omega=\exp \{2 \pi i / n\}$ (in fact, ω can be any primitive n-th root of unity). Let $P=\left(p_{i j}\right)=\left(\omega^{i j}\right), i, j=0,1, \cdots, n-1, \Omega=(1 / \sqrt{ } \bar{n}) P$. Then P is a Vandermonde matrix and Ω is a unitary matrix.

Also,

$$
\Omega^{-1} C \Omega=\bar{\Omega}^{\prime} C \Omega=\operatorname{diag}\left\{\mu_{0}, \mu_{1}, \cdots, \mu_{n-1}\right\}
$$

where diag $\left\{\mu_{0}, \mu_{1}, \cdots, \mu_{n-1}\right\}$ denotes the diagonal matrix with $\mu_{0}, \mu_{1}, \cdots, \mu_{n-1}$ on the diagonal, and Ω^{\prime} and $\bar{\Omega}$ denote the transpose and complex conjugate of Ω respectively.

The main theorem (Theorem 5) in [3] states as follows: Le

$$
A=\left[\begin{array}{cccc}
A_{0} & A_{1} & \cdots & A_{m-1} \\
A_{m-1} & A_{0} & \cdots & A_{m-2} \\
\vdots & \vdots & & \vdots \\
A_{1} & A_{2} & \cdots & A_{0}
\end{array}\right]
$$

be a $m \times m$ block circulant with each A_{i} being a $n \times n$ circulant matrix. Let $P=\left(p_{i j}\right)$ $=\left(\omega^{i j}\right)$ be the $n \times n$ matrix as before. Let $r_{0}, r_{1}, \cdots, r_{m-1}$ be the m-th roots of unity. If Q is given by the following matrix:

[^0]\[

Q=\left[$$
\begin{array}{cccc}
p & p & \cdots & p \\
r_{0} p & r_{1} p & \cdots & r_{m-1} p \\
\vdots & \vdots & \cdots & \vdots \\
r_{0}^{m-1} p & r_{1}^{m-1} & p & \cdots \\
r_{m-1}^{m-1} p
\end{array}
$$\right]
\]

We have $Q^{-1} A Q=D$ with D being a matrix of diagonal blocks $D_{0}, D_{1}, \cdots, D_{m-1}$ where each D_{i} is diagonal. The diagonal elements are given by the eigenvalues of the matrix $\sum_{k=0}^{m-1} A_{k} r_{i}^{k}$. Moreover, given any $n m \times n m$ diagonal block matrix $D=\operatorname{diag}$ $\left\{D_{0}, D_{1}, \cdots, D_{m-1}\right\}$ where each D_{i} is a $n \times n$ diagonal matrix, $A=Q D Q^{-1}$ is a block circulant with each block being a circulant matrix.
(We note that $r_{0}, r_{1}, \cdots, r_{m-1}$ are m-th roots of unity implying $r_{j}=r^{j}, j=0,1$, $\cdots, m-1$ where $r=\exp \{2 \pi i / m\})$.

In [3], a proof for three block case ($m=3$) is given, and it states that the proof for the general case is omitted since it is just an extension of the three block case. Here we present a simple proof for the general case by using elementary properties of Kronecker product of matrices.

The proof goes as follows: The matrix A is equal to

$$
I \otimes A_{0}+T \otimes A_{1}+T^{2} \otimes A_{2}+\cdots+T^{m-1} \otimes A_{m-1}
$$

where T is the $m \times m$ permutation matrix corresponding to the permutation

$$
\left(\begin{array}{cccccc}
0 & 1 & \cdots & i & \cdots & m-1 \\
1 & 2 & \cdots & i+1 & \cdots & 0
\end{array}\right)
$$

$I=T^{m}$ is the identity matrix and \otimes denotes the Kronecker product. Clearly, each $T^{k}, k=0,1, \cdots, m-1$, is a $m \times m$ circulant.
Let $R=\left(s_{i j}\right)=\left(r^{i j}\right)$ be a $m \times m$ matrix with $r=\exp \{2 \pi i / m\}$ and $\Gamma=(1 / \sqrt{ } \bar{m}) R$. Then, again, R is a $m \times m$ Vandermonde matrix and Γ is a unitary matrix. By using elementary properties of Kronecker product of matrices (e.g., see pp. 68-70 in [2]), we have

$$
\begin{align*}
& (\Gamma \otimes \Omega)^{-1} A(\Gamma \otimes \Omega) \\
= & \left(\Gamma^{-1} \otimes \Omega^{-1}\right)\left(I \otimes A_{0}+T \otimes A_{1}+\cdots+T^{m-1} \otimes A_{m-1}\right)(\Gamma \otimes \Omega) \\
= & \left(I \otimes \Omega^{-1} A_{0} \Omega\right)+\left(\Gamma^{-1} T \Gamma \otimes \Omega^{-1} A_{1} \Omega\right)+\cdots+\left(\Gamma^{-1} T^{m-1} \Gamma \otimes \Omega^{-1} A_{m-1} \Omega\right) \tag{1}
\end{align*}
$$

Since each A_{k} is a $n \times n$ circulant, $\Omega^{-1} A_{k} \Omega$ is a diagonal matrix, denoted by
E_{k}, with eigenvalues of A_{k} on the diagonal for $k=0,1, \cdots, n-1$. Since each T^{j} is a $m \times m$ permutation matrix, $\Gamma^{-1} T^{j} \Gamma^{\prime}=\operatorname{diag}\left\{r^{0}, r^{j}, r^{2 j}, \ldots, r^{(m-1) j}\right\}$ for $j=0$, $1, \cdots, m-1$. Thus, (1) is equal to, i. e.,

$$
\begin{aligned}
& (\Gamma \otimes \Omega)^{-1} A(\Gamma \otimes \Omega) \\
& =I \otimes E_{0}+\operatorname{diag}\left\{r^{0}, r^{1}, \cdots, r^{m-1}\right\} \otimes E_{1}+\cdots+\operatorname{diag}\left\{r^{0}, r^{m-1}, \cdots, r^{(m-1)(m-1)}\right\} \otimes E_{m-1} \\
& =\operatorname{diag}\left\{\sum_{k=0}^{m-1} E_{k}, \sum_{k=0}^{m-1} r^{k} E_{k}, \sum_{k=0}^{m-1} r^{2 k} E_{k}, \cdots, \sum_{k=0}^{m-1} r^{(m-1) k} E_{k}\right\} .
\end{aligned}
$$

This means that the i-th diagonal element is a diagonal matrix denoted by D_{i}, and the diagonal elements of D_{i} are given by the eigenvalues of the matrix $\sum_{k=0}^{m-1} A_{k} r^{i k}$.

Now we show that $A=(\Gamma \otimes \Omega) D(\Gamma \otimes \Omega)^{-1}$ is a block circulant with each block being a circulant matrix and $D=\operatorname{diag}\left\{D_{0}, D_{1}, \cdots, D_{m-1}\right\}$ where each D_{i} is a $n \times n$ diagonal matrix. We need the following:

LEMMA. If $D_{p}=\operatorname{diag}\left\{d_{00}^{p}, d_{11}^{p}, \cdots, d_{(n-1)(n-1)}^{p}\right\}$ then $F_{p}=\Omega D_{p} \Omega^{-1}$ is a circulant for $p=0,1, \cdots, m-1$.

PROOF. $\quad\left(\Omega D_{p} \Omega^{-1}\right)_{i j}=\frac{1}{n} \sum_{k=0}^{n-1} \omega^{i k} d_{k k}^{p} \bar{\omega}^{j k}$, and

$$
\left(\Omega D_{p} \Omega^{-1}\right)_{(i+1)(j+1)}=\frac{1}{n} \sum_{k=0}^{n-1} \omega^{(i+1) k} d_{k k}^{p} \bar{\omega}^{(j+1) k}
$$

since $\omega \bar{\omega}=1,\left(\Omega D_{p} \Omega^{-1}\right)_{i j}=\left(\Omega D_{p} \Omega^{-1}\right)_{(i+1)(j+1)}$ for $i, j=0,1, \cdots, n-1$ (the subscripts are taken modulo n).
Hence each $F_{p}=\Omega D_{p} \Omega^{-1}$ is a circulant for $p=0,1, \cdots, m-1$.
Now, by using our Lemma,

$$
\begin{align*}
A= & (\Gamma \otimes \Omega) D(\Gamma \otimes \Omega)^{-1} \\
= & (\Gamma \otimes \Omega)\left(\operatorname{diag}\left\{D_{0}, D_{1}, \cdots, D_{m-1}\right\}\right)\left(\Gamma^{-1} \otimes \Omega \Omega^{-1}\right) \\
= & (\Gamma \otimes \Omega)\left[\operatorname{diag}\{1,0, \cdots, 0\} \otimes D_{0}+\operatorname{diag}\{0,1,0, \cdots, 0\} \otimes D_{1}+\cdots\right. \\
& \left.+\operatorname{diag}\{0,0, \cdots, 0,1\} \otimes D_{m-1}\right]\left(\Gamma^{-1} \otimes \Omega^{-1}\right) \\
= & \Gamma(\operatorname{diag}\{1,0, \cdots, 0\}) \Gamma^{-1} \otimes F_{0}+\Gamma(\operatorname{diag}\{0,1,0, \cdots, 0\}) \Gamma^{-1} \otimes F_{1}+\cdots \\
& +\Gamma(\operatorname{diag}\{0, \cdots, 0,1\}) \Gamma^{-1} \otimes F_{m-1} . \tag{2}
\end{align*}
$$

Hence, by using (2), the $i j$ entry in the matrix A is

$$
\frac{1}{m}\left(r^{i 0} 1 p^{j 0} F_{0}+r^{i 1} 1_{P^{j 1}} F_{1}+\cdots+r^{i(m-1)} 1 P^{j(m-1)} F_{m-1}\right),
$$

and the $(i+1)(j+1)$ entry in the matrix A is

$$
\frac{1}{m}\left(r^{(i+1) 0} 1 \bar{p}^{(j+1) 0} F_{0}+r^{(i+1) 1}{ }_{1 p^{(j+1) 1}} F_{1}+\cdots+r^{(i+1)(m-1)} 1 p^{(j+1)(m-1)} F_{m-1}\right)
$$

Since $r \boldsymbol{p}=1$, the $i j$ entry in A is equal to the ($i+1$) $(j+1)$ entry in A for i, j $=0,1, \cdots, m-1$ (all the $i j$ entries are taken modulo m). Hence, A is a block circulant.

The matrix Q in the theorem is our $R \otimes P$.

$$
\begin{aligned}
& \text { Then } Q^{-1}=\frac{1}{m n}\left(R^{-1} \otimes P^{-1}\right), \text { and } \\
& \qquad \begin{aligned}
Q^{-1} A Q & =\frac{1}{m n}\left(R^{-1} \otimes P^{-1}\right) A(R \otimes P) \\
& =\left(\frac{1}{\sqrt{m n}}\left(R^{-1} \otimes P^{-1}\right)\right) A\left(\frac{1}{\sqrt{m n}}(R \otimes P)\right) \\
& =(\Gamma \otimes \Omega)^{-1} A(\Gamma \otimes \Omega) .
\end{aligned}
\end{aligned}
$$

REMARKS. It is indicated on page 19 in [3] that R and P are Vandermonde matrices and the determinant of a Vandermonde matrix is well known. However, Q is not a Vandermonde matrix. But the determinant of $Q, \operatorname{det} Q$, is equal to $\operatorname{det}(R \otimes P)=(\operatorname{det} R)^{n}(\operatorname{det} P)^{m}$ (see p. 70 in [2]). G. Trapp pointed out to me that, using the same method, one can deal with a block circulant each whose entry is again a block circulant, \cdots, etc.

University of Pittsburgh
Pittsburgh, Pennsylvania 15260
U.S.A.

REFERENCES

[1] Friedman, B., Eigenvalues of Composite Matrices. Proc. Cambridge Philosophical Soc. 57 (1961), 37-49.
[2] Murnaghan, F.D., The Theory of Group Representations, The Johns Hopkins Press, Baltimore, 1938.
[3] Trapp, G., Inverse of Circulant Matrices and Block Circulant Matrices, Kyungpook Math. J. 13 (1973), 11-20.

[^0]: *This work was done while the author was at Carnegie-Mellon University (under a faculty exchange program between Carnegie-Mellon University and the University of Pittsburgh). The author wishes to thank Professor R.J. Duffin for helpful discussions.

