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1. Introduection.

B. Banaschewski has shown in [1] that perfect onto projectivity in a full
subcategory of the category Haus of Hausdorff spaces and continuous maps which
is left-fitting with respect to essential perfect onto maps, is properly behaved.
In this paper, we show that for any extensive subcategory C* of the category
Haus* of Hausdorff spaces and continuous semi-open maps, the full subcategory
C of the category Haus determined by objects of C* is left-fitting with respect
to essential perfect onto maps. Hence perfect onto projectivity in the category C
is properly behaved. It is known that for any infinite cardinal %2, the subcategory
- of almost k-compact spaces is extensive in the category Haus*., Z. Frolik has
shown in [3] that the class of regular almost realcompact spaces is left-fitting
with respect to perfect onto maps. Using the above result, the class of almost
k-compact spaces is left-fitting with respect to irreducible perfect onto maps. In
particular, so are the class of H-closed spaces and the class of almost real
compact spaces. We introduce the concept of almost £-boundedness for an infinite
cardinal £ greater than R, Likewise compact spaces are exactly pseudocompact
realcompact spaces (see [4]), a Hausdorff space is H-closed iff it is almost A-com-
pact almost k-bounded. Consequently, a completely regular space is compact iff

it is almost k-compact (or k-compact) almost k-bounded. Our terminology follows
mainly [1]. In particular, I, # and ¥ denote closure operator, interior operator
and complement respectively. '

The author takes this opportunity to thank Professor B. Banaschewski for
introducing the author to the problem discussed here and encouraging him to

study 1t.

2. Perfect onto projectivity.

2.1 DEFINITION, Let K be a category and P a class of morphisms in K. An
object A of K 1s said to be P-projective if for any g:A—B in K and for any
f:C—B in P, there is a morphism %#2:4A—C in K with g=fh A morphism )
in P is said to be essential if fg € P implies g&P. A morphism f:A—B in K
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is said to be a P-projective cover of B if A is P-projective and f is essential.

The following definition is due to B. Banaschewski [1].

2.2 DEFINITION. Let K be a category and P a class of morphisms in K. The
P-projectivity is said to behave properly if the following three conditions are

fulfilled:
1. The following are equivalent for an object A:
a) A is P-projective. .
b) Any morphism f:B—A in P has a right inverse. -
¢) Any essential morphism f:B—A is an isomorphism.
2. Any object in K has an essentially unique P-projective cover.
3. The following are equivalent for a morphism f:B—A in P:
a) f 1s a P-projective cover.
b) f Is an essential-:rﬁorphism and for any g, if fg is an essential morphism:
then g is an isomorphism. |
c) B is P-projective, and if f=hg with morphisms g and % in P where %
has P-projective domain then g is an isomorphism.

In what follows, we'deal with subcategories of the category Haus and P will
be the class of perfect onto morphisms in the category. Instead of P-projectivity

we will call it p.o. projectivity.

2.3 DEFINITION. If X and Y are topological spaces, then a map f:X—Y is
sald to be semi-opern if the image under f of each non-empty open set of X has

r.on-empty interior in Y.

H. Herrlich and G. E. Strecker hdve shovs;'n (7] that the full subcategory of
Haus* determined by H-closed spaces is epi-reflective in Haus* via the Katétov

extension.

2.4 DEFINITION. A reflective subcategory C* of Haus* is said to be extensive

in Haus* if every C*-reflection map is a dense embedding.

2.5 DEFINITION. An onto map f:X—Y in Haus 1s said to be :irreducsfle if
for any closed ACX, f(A)=Y implies A=X. |

[t is known [1] that a perfect onto map in Haus is essential iff it is

irreducible.

2.6 LEMMA. Every irreducible closed map is semi-open.
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PROOF. Let f: X—Y be an irreducible closed map and let U be a non-empty-
~open set of X. Since f is irreducible closed, Zf(ZU) is non-empty open and.
f(U) contains €f(¥ U). Hence f(U) has a non-empty interior.

2.7 THEOREM. FEvery extensive subcategory C* of the category Haus* is lefi-
fitting with respect to essential perfect onto maps in Haus, i.e. for any essential.
perfect onto map f:X—Y, X belongs to C* whenever Y belongs to C*. .

PROOF. Let f: X—Y be an essential perfect onto map and Y an object of C*.
By Lemma 2.6, f is a morphism of the category Haus*. Let 7.:X—7X be the-
C*-reflection of X. Then there is a unique morphism  f:#X—Y in C* with.
Fr,=f. By Lemma 7, in [1], f(rX—r (X))CY—f(X)=¢ and so rX=r,(X).
Hence 7, is an onto homeomorphism, which implies X belongs to C*. '

REMARK. Since every continuous semi-open map is a p-map (see [5]), Theorem :

2.7 still holds for an extensive subcategory of the category pHaus of Hausdorff
spaces and p-maps. |

2.8 COROLLARY. The class of H-closed spaces is left-fitting with respect to-
trreducible perfect onto maps.

Using Proposition 3 and Corollary 3 of Proposition 4 in (1], the following is.
immediate from Theorem 2.7.

2.9 THEOREM. Let C* be an extensive subcategory of the category Haus* and C
be the jull subcategory of the category Haus determined by objects of C*. Then:
p.o. projectives in C are exactly extremally disconnected spaces belonging to C and
p.o. projectivity in C is properly behaved.

3. Almost k-compact spaces.

Z. Frolik has introduced in [3] almost realcompact spaces and R.N. Bhaumik.
~and D.N. Misra have generalized it in [2] to almost k-compact spaces for any
infinite cardinal Z. | |

3.1 DEFINITION. Let 2 be an infinite cardinal. A Hausdorff spaces X is said to-
be almost k-compact if a maximal open filter Z on X for which {IU|UEZ}
has the 4-intersection property is convergent.

We note that almost R, (R )-compact spaces are precisely H-closed (almost:
realcompact) spaces.

3.2 DEFINITION, Let 2 be an infinite cardinal number greater than W;..
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A Hausdorff space X is said to be almost k-bounded if every open covering of X
with cardinal less than % has a finite proximate Subcovering, i.e. a finite
subfamily whose union is dense 1n X.

We note that a completely regular space is pseudocompact 1ff it is almost
R,-bounded.

The following theorem is immediate from the fact that every open filter in
an almost %-bounded space has the k-intersection property.

3.3 THEOREM. Let k be an infinite cardinal greater than N, Then a Hausdorff
space is H-closed iff it is almost k-compact almost k-bounded.

3.4 DEFINITION. Let « be a collection of open coverings of a space X. An a-
Cauchy family is an open filter base % on X such that for every ¢z in «, there
exists an A4 €z and a BE€% with BCA. The space X Is sald t0 be a-complete
it every a-Cauchy family has at least one cluster point.

The following definition is due to H. Herrlich [6].

3.5 DEFINITION. A completely regular space is said to be &-compact if every z-
ultrafilter with the %-intersection property 1s fixed.

3.6 THEOREM. Let X be a cémp.{etely regular space and let £ , be the family of

cozero set coverings of X with cardinal less than k. Then X is k-compact iff it is
A -complete.

PROOF. It is obvious that the space X is compact (=N,-compact) iff X is
aﬁxu-complete. Hence we may assume that % is greater than R, Let Z be a
A k-Cauchy family in a k-compact space’ X. Suppose that Z° has no cluster point.
Since Z is a filter base on its Stone-Cech compactification 8X. Z has a cluster
point in BX, say pEBX—X. Since X is k-compact, it Is £-closed in S8X (see 1.8.
in [8]); -there is a family (U 1_'.)z.E ; of open neighborhoods of p in BAX such that
NU,NX=¢ and |I|<k Using the fact that the zero-set neighborhoods of p in

BX form a fundamental system of neighborhoods of p, there exists a family
(Z i)iEI of zero-sets of BX such that p&fZ CZ CU, for each :&l. Thus (NZ)

NX=¢. Obviously, {¢ (Z.NX)|/EI} isa member of £, and so thereis a UEZ
and an &/ with UC%”X(Z iﬂX). Hence U ﬂZz:qS which is a contradiction to

that p belongs to the closure of U in GX.
Conversely, let # be a z-ultrafilter on a .£,-complete space X with the &
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intersection property. Consider Z = {U|U is open and contains a member of #}.
*“Then it is easy to show that & is £ ,-Cauchy. Hence Z" has a cluster point. By

the complete regularity of X, we have N{Z|Z&€F | =N{ITUIUEZ} #¢. Thus X
1S k-compact. |

Since a Hausdorff space X is almost k-compact iff X is a,-complete, where
o, 1s the family of all open coverings of X with cardinal less than £ (see [2]),
the following is immediate from Theorem 3. 6.

3.7 COROLLARY. Every k-compact space is almost k-compact.

3.8 COROLLARY. For a completely regular space X, the following are equivalent:
1) X 7s compact.

2) X is k-compact almost k-bounded.
3) X is almost k-compact almost k-bounded.

PROOF. It 1s immediate from the fact that every regular H-closed space is
compact.

C-T. Liu and G.E. Strecker have shown that the full subcategory of - Haus*
determined by almost realcompact spaces is extensive in Haus* (see [10}). By
the same argument, we have:

3.9 THEOREM. The full subcategory A,* of Haus* determined by almost Fk-

compact spaces is extensive in Haus*.

We note that the Ak*-ref_lection of a Hausdorf{f space X is given byl XUIZ |

Z is a non-convergent maximal open filter such that {{U|U&Z} has the k-
intersection property} with the relative topology of the Katétov extension #X of
X and the natural embedding.

3. 10 COROLLARY. The class of almost k-compact spaces is left-fitting with respect
to irreducible p.o. maps. P.o. projectivity in the category of almost k-compact
spaces and continuous maps 1s properly behaved. An almost Ek-compact space is p. o.
projective in the category iff it is extremally disconnected.

f

3.11 LEMMA. Let w . be the first ordinal of cardinal R, Let W(w,.) be the

space of ordinal less than w, +1 endowed with the order itopology. Then a family
with cardinal less than R formed of closed cofinal subsets of W(w, +1) has a
non-empty intersection.

a+1°

PROOF. Let (F))._, be such a family. Choose a relation < which well-orders I.

A=y
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Let 5 be an ordered set IXN with the order relation <, where (z, n)<(7, m)

1t n<m or i<j if m=m and N is the set of natural numbers with the usual
order relation. Then by the induction, one can consiruct a subset A= {4, |(, #n)

&3} of W(w,,y) such that 4, E€F; and (Z,n)<({j, m) implies 4, <A, . Since
the cardinal of A is less than R, 41 1t is bounded in W(w,. ,); sup4d exists.

Furthermore, one can easily show that for each /&I, supA=sup{4, ,|nEN]}..
Thus we can conclude that supA4 belongs to NF..

3. 12 COROLLARY. The space W (w,, . |) is almost R, , ,-compact but not almost R, |-
compact.

PROCF. It is known [6] that the space W(w +1) Is R, ,-compact. Hence it Iis:
almost W, ,-compact by Corollary 3.7. On the other hand, let Z" be a maximal
open filter contalning {7 (c+1)} a<wﬂ,+1}, where T (o)={7|o<7 <a)a+1}. Then:
it i1s clear that Z is not convergent. By Lemma 3.11, {{U|U&%} has the:
R, ,rintersection property, for every member of a non-convergent maximal
open filter on W(w, ;) is cofinal.

REMARK. -Van der Slot has asserted in [12] that the space W(w, )is R, o~

ultracompact but not Y, . yultracompact. But his proof was incorrect. However,.
using Lemma 3. 11, one can prove his assertion.

3. 13 THEOREM. For any limit cardinal k, there exists an almost E-compact
space which is not almost. t-compact for every infinite cardinal t less than k.

PROOF. Let X be the space W(w,, ;) (R,,,<k) with the product topology.
Since X is k-compact (see [6]), X is almost k-compact. By the same argument.

as Theorem 5 in (3], every closed subspace of an almost #-compact regular space
is also almost #-compact. Hence we can conclude that X is not almost #-compact

for ¢<k Indeed, suppose X 1Is almost R _-compact for some Y <k Then the
closed subspace of X which is homeomorphic with the space W(w,, ;) is also:
almost W, -compact, which is a contradiction,

Carleton University '
Ottawa, Ontario
Canada
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