Kiyungpook Math. J.

A THEOREM ON JOIN VARIETIES OF GROUPS

By R.D. Giri

The join of two f. b. * varieties of groups need not be f. b. is a well-known fact, but no example is known so far to testify this.

Bryant has, however, characterized that,
(i) If \mathscr{U} is a variety of groups and \mathscr{V} is a nilpotent variety, then the join variety $\mathscr{U} \vee \mathscr{V}$ is f.b. iff \mathscr{U} is f.b. see [1]
(ii) Let \mathscr{U} be a f.b. variety and \mathscr{V}, a vaughan Lee variety (a subvariety of $\mathscr{N}_{c} \mathscr{O}<O \mathscr{\mathscr { N } _ { d }}$). Then the join variety $\mathscr{U} \vee \mathscr{V}$ is f.b. (see [2]).

Denoting varieties by doubly underlined Roman Capitals and using the notations of [2], we give the following general characterization of the join of two varieties.

This includes (i).
THEOREM. If V is a variety in which an identity $\left[\left[x_{1}, \cdots, x_{m}\right],\left[x_{m+1}, x_{m+2}\right]\right]$ is satisfied and \mathscr{U} is arbitrary then $\mathscr{U} \vee \mathscr{V}$ is f.b. iff \mathscr{U} is f.b.

PROOF. (\Rightarrow) $\mathscr{C} \vee \mathscr{V}$ is f.b. by assumption. Moreover, since \mathscr{V} is f.b. (see[3]), $\mathscr{U} \wedge \mathscr{V}$ is $\mathrm{f} . \mathrm{b}$. because as subvariety it again satisfies the law $\left[\left[x_{1}, \cdots, x_{m}\right],\left[x_{m+1}\right.\right.$, $\left.x_{m+2}\right]$]. Hence by Lemma 4 of [1] \mathscr{U} is f.b.
(\Leftarrow) Conversely for $m \geq 2$, the laws,
(a) $\left[\left[x_{1}, y_{1}\right] \cdots,\left[x_{m+1}, y_{m+1}\right]\right]$
(b) $\left[\left[x_{1}, \cdots, x_{m+1}\right],\left[y_{1}, \cdots, y_{m+1}\right]\right]$,
can easily be seen to be the consequences of the law $\left\{\left[x_{1}, \cdots, x_{m}\right],\left[x_{m+1}, x_{m+2}\right]\right]$. Hence the set of laws \mathscr{V} defining the variety \mathscr{V} includes $\gamma_{m+1}\left(X^{\prime}\right), \gamma_{m+1}(X)^{\prime}$ where $X, \gamma_{m+1}\left(X^{\prime}\right), \gamma_{m+1}(X)^{\prime}$ have their usual meanings as in [2]. In other words \mathscr{V} is the subvariety of \mathscr{N}_{m} ơ \wedge ot \mathscr{N}_{m}. Since \mathscr{U} is f.b. by assumption in this case, therefore, in particular by (ii) $\mathscr{U} \vee \mathscr{V}$ is f.b.

The author is grateful to his supervisor prof. M. A. Kazim for encouragement and help in the preparation of this note.

[^0]A.M.U., Aligarh (India)

REFERENCES

[1] Bryant R.M., On some varieties of groups, Bull. London. Math. Soc. 1(1969) 60~64.
[2] \qquad , On Join varieties of groups, Maths. Z. 119(1971) 143~148.
[3] Vaughan Lee M. R., On the laws of some varieties of groups, J. Austral. Math. Soc. 11 (1970) 353~356.

[^0]: * f.b. $=$ Finitely based.

