Kyungpook Math. J. Volume 14, Number 1 June, 1974

A THEOREM ON JOIN VARIETIES OF GROUPS

By R.D. Giri

The join of two f. b. varieties of groups need not be f.b. is a well-known fact, but no example is known so far to testify this.

Bryant has, however, characterized that,

(i) If \mathscr{U} is a variety of groups and \mathscr{V} is a nilpotent variety, then the join variety $\mathscr{U} \vee \mathscr{V}$ is f.b. iff \mathscr{U} is f.b. see [1]

(ii) Let \mathscr{U} be a f.b. variety and \mathscr{V} , a vaughan Lee variety (a subvariety of $\mathscr{N}_c \mathscr{Ol} < \mathscr{OlN}_d$). Then the join variety $\mathscr{U} \lor \mathscr{V}$ is f.b. (see [2]).

Denoting varieties by doubly underlined Roman Capitals and using 'the notations of [2], we give the following general characterization of the join of two varieties. This includes (i).

THEOREM. If V is a variety in which an identity $[[x_1, \dots, x_m], [x_{m+1}, x_{m+2}]]$ is satisfied and \mathscr{U} is arbitrary then $\mathscr{U} \vee \mathscr{V}$ is f.b. iff \mathscr{U} is f.b. PROOF. (\Rightarrow) $\mathscr{U} \vee \mathscr{V}$ is f.b. by assumption. Moreover, since \mathscr{V} is f. b. (see [3]), $\mathscr{U} \wedge \mathscr{V}$ is f.b. because as subvariety it again satisfies the law $[[x_1, \dots, x_m], [x_{m+1}, \dots, x_m]]$

 x_{m+2}]]. Hence by Lemma 4 of [1] \mathcal{U} is f. b.

(\Leftarrow) Conversely for $m \ge 2$, the laws, (a) $[x_1, y_1] \cdots, [x_{m+1}, y_{m+1}]]$ (b) $[[x_1, \cdots, x_{m+1}], [y_1, \cdots, y_{m+1}]],$

can easily be seen to be the consequences of the law $[[x_1, \dots, x_m], [x_{m+1}, x_{m+2}]]$. Hence the set of laws \mathscr{V} defining the variety \mathscr{V} includes $\gamma_{m+1}(X')$. $\gamma_{m+1}(X)'$ where $X, \gamma_{m+1}(X'), \gamma_{m+1}(X)'$ have their usual meanings as in [2]. In other words \mathscr{V} is the subvariety of $\mathscr{N}_m \mathscr{A} \wedge \mathscr{A} \mathscr{N}_m$. Since \mathscr{U} is f. b. by assumption in this case, therefore, in particular by (ii) $\mathscr{U} \vee \mathscr{V}$ is f. b.

The author is grateful to his supervisor prof. M.A. Kazim for encouragement and help in the preparation of this note.

· · ·

^{*} f.b. = Finitely based.

R.D. Giri

A.M.U., Aligarh (India)

<u>, -</u>

REFERENCES

[1] Bryant R.M., On some varieties of groups, Bull. London. Math. Soc. 1(1969) 60~64. _____, On Join varieties of groups, Maths. Z. 119(1971) 143~148. [2] [3] Vaughan Lee M.R., On the laws of some varieties of groups, J. Austral. Math. Soc.

11 (1970) 353~356.

84

.

•

.

.

•

•

•

. . . - -