A NOTE ON RECURRENCE RELATIONS FOR A SET OF POLYNOMIALS SUGGESTED BY LAGUERRE POLYNOMIALS

By B. Nath

1. In his paper Konhauser [1] examined the biorthogonality of the pair $\left\{Z_{n}^{c}(x\right.$; $k)\},\left\{Y_{n}^{c}(x ; k)\right\}$ with respect to the weight function $e^{-x} x^{c}$ over the interval $(0, \infty)$. and obtained among other things a recurrence relation for the polynomials $Z_{n}^{c}(x$; k) connecting polynomials corresponding to c and $c+k$ by direct calculations. Prabhakar [2] established a pure recurrence relation for the polynomial set $Z_{n}^{c}(x$; k) by using Schläfli's contour integral.

The purpose of this note is to derive a simple method by means of which we can obtain short proofs of results of Konhauser [1, (8)] and Prabhakar [2, (2.6)].
2. It is known [2] that the generating function for the polynomial set $Z_{n}^{c}(x ; k)$. is given by

$$
\begin{equation*}
e^{t} \phi\left(k, c+1 ;-x^{k} t\right)=\sum_{n=0}^{\infty} \frac{Z_{n}^{c}(x ; k) t^{n}}{\Gamma(k n+c+1)}, \tag{2.1}
\end{equation*}
$$

where $\phi(a, b ; z)$ is the Bessel-Maitland function [4, (1.3)].
Let
(2.2) $\quad G=e^{t} \phi\left(k, c+1 ;-x^{k} t\right)$.

Differentiating partially (2.2) with respect to x and t and using [4, (2.2)], we have

$$
\begin{equation*}
\frac{\partial G}{\partial x}=-k x^{k-1} t e^{t} \phi\left(k, c+k+1 ;-x^{k} t\right) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial G}{\partial t}=e^{t} \phi\left(k, c+1 ;-x^{k} t\right)-x^{k} e^{t} \phi\left(k, c+k+1 ;-x^{k} t\right) \tag{2.4}
\end{equation*}
$$

From (2.1), (2.2) and (2.3), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\frac{d}{d x} Z_{n}^{c}(x ; k)}{\Gamma(k n+c+1)} t^{n}=-k x^{k-1} \sum_{n=0}^{\infty} \frac{Z_{n}^{c+k}(x ; k)}{\Gamma(k n+c+k+1)} t^{n+1} \tag{2.5}
\end{equation*}
$$

Equating coefficients of t^{n} on both sides of (2.5), we have

$$
\frac{d}{d x} Z_{n}^{c}(x ; k)=-k x^{k-1} Z_{n-1}^{c+k}(x ; k),
$$

also obtained by Konhauser [1, (8)] by direct calculations.
From (2.1), (2.2) and (2.4), we derive
(2.6) $\quad \sum_{n=0}^{\infty} \frac{n Z_{n}^{c}(x ; k)}{\Gamma(k n+c+1)} t^{n-1}=\sum_{n=0}^{\infty} \frac{Z_{n}^{c}(x ; k)}{\Gamma(k n+c+1)} t^{n}-x^{k} \sum_{n=0}^{\infty} \frac{Z_{n}^{c+k}(x ; k)}{\Gamma(k n+c+k+1)} t^{n}$.

Equating coefficients of t^{n} on both sides of (2.6) and after a slight adjustment, we get

$$
\begin{equation*}
x^{k} Z_{n}^{c+k}(x ; k)=(k n+c+1)_{k} Z_{n}^{c}(x ; k)-(n+1) Z_{n+1}^{c}(x ; k), \tag{2.7}
\end{equation*}
$$

also established by Prabhakar [2, (2.6)] by a different method.
If we put $k=2$ in (2.7), we obtain '3, (5.39)].
The author wishes to express his sincere thanks to Prof. R. S. Mishra for his valuable suggestions.

Banaras Hindu University Varanasi-5 (India)

REFERENCES

[1] Konhauser, J.D.E., Biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math. 21(1967), 303-314.
[2] Prabhakar, T. R., On a set of polynomials suggested by Laguerre polynomials, Pacific J. Math. ${ }^{-35(1970), ~ 213-219 . ~}$
[3] Preiser, S., An investigation of biorthogonal polynomials derivable from ordinary differential equations of the third order, J. Math. Anal. Appl. 4(1962), 38--64.
[4] Wright, E.M., On the coefficients of power series having exponential singularities, J. London Math. Soc. 8(1933), 71-79.

