A NOTE ON CYCLICITY OF GROUPS

By R.D. Giri

It is well known (see [1] p. 133) that if $|G|=p_{1} \cdot p_{2} ; p_{1}<p_{2}$ where $p_{i}^{\prime} s(i=1,2)$ are primes then group G is cyclic whenever $p_{2} \neq 1+k p_{1}$ for any nonzero integer k. We generalize this fact by proving the following theorem.

THEOREM. Let G be a group of order $p_{1} \cdot p_{2} \cdots p_{n}$ where p_{i} 's are distinct ordered primes. If G satisfies the following $\frac{n}{2}\left[2^{n}-(n+1)\right]$ conditions:
(1) $1+k p_{j} \neq p_{\sigma(1)} \cdot p_{\sigma(2)} \cdots p_{\sigma(i)} ; j \neq \sigma(i), \forall \sigma(i), 2 \leq i \leq n-1$
(2) $1+k p_{j} \neq p_{\sigma(1)} ; \sigma(1)=j+1, j+2, \cdots, n$,
where σ is a permutation on $\{1,2, \cdots, n\}, k$ is any nonzero integer; then G is cyclic.
PROOF. In fact, (1) and (2) enable us to prove the existence of normal subgroups $C_{p_{1}}, \cdots, C_{p_{n-1}}$ and $C_{p_{n}}(=K)$ say, of order $p_{1}, p_{2}, \cdots, p_{n-1}$ and p_{n} respectively. Orderedness of primes supplements with (1) and (2) that direct product $C_{p_{1}} \times \cdots \times C_{p_{n}}$ is cyclic. The proof follows by using induction on n. If $n=1$ there is nothing to prove. For $n=2$ the theorem is well-known (cf. [1] p.133). Assume that $H=C_{p_{1}} \times$ $C_{p_{2}} \times \cdots \times C_{p_{n}-1}$ is cyclic by induction hypothesis. Now we consider a group G of order $q \cdot p_{n}=\left(p_{1} \cdots p_{n-1}\right) p_{n}$. The number of Sylow p_{j}-subgroups in G is $1+k \cdot p_{j}$ which divides the order of G. For this there are following possibilities:
(i) $1+k \cdot p_{j}=p_{\sigma(1)} ; \sigma(1) \leq j$
(ii) $1+k \cdot p_{j}=p_{\sigma(1)} ; \sigma(1)=j+1, j+2, \cdots, n$
(iii) $1+k \cdot p_{j}=p_{\sigma(1)} \cdot p_{\sigma(2)} \cdots p_{\sigma(i)} ; j=\sigma(i)$ for some i but $j \neq \sigma(1), \cdots, \sigma(i-1)$
(iv) $1+k \cdot p_{j}=p_{\sigma(1)} \cdot p_{\sigma(2)} \cdots p_{\sigma(i)} ; j \neq \sigma(i), \forall \sigma(i)$
(v) $1+k \cdot p_{j}=1 \quad$ for all $j=1,2, \cdots, n-1$

All possibilities are ruled out by (1) and (2) and only (v) remains which means that C_{p}, is normal for $1 \leq j \leq n-1$. Now it is easy to prove that there exists a unique Sylow p_{n}-subgroup K, because out of the following four possibilities only last one persists and others are ruled out;
(i) $1+k \cdot p_{n}=p_{\sigma(1)} ; \sigma(1) \leq n$
(ii) $1+k \cdot p_{n}=p_{\sigma(1)} \cdot p_{\sigma(2)} \cdots p_{\sigma(i)} ; \sigma(i)=n$ for some i
(iii) $1+k \cdot p_{n}=p_{\sigma(1)} \cdot p_{\sigma(2)} \cdots p_{\sigma(i)} ; \sigma^{\prime}(i) \neq n, \forall \sigma(i)$
(iv) $1+k \cdot p_{n}=1$

Thus $H=C_{p_{1}} \times \cdots \times C_{p_{n-1}}$ and $K=C_{p_{n}}$ are normal in G and by the same arguements as we do in particular case when $n=2$ (see [1] p.133), we can easily show that G is cyclic of order $q \cdot p_{n}=p_{1} \cdots p_{n^{\prime}}$. This completes the proof.

REMARK 1. If $|G|=p_{1} \cdot p_{2} \cdots p_{n}$ then the fact that number of conditions mentioned in (1) and (2) are $\frac{n}{2}\left[2^{n}-(n+1)\right]$, can be verified as follows:
(1) includes $n\left({ }^{n-1} C_{2}+\cdots+n-1 C_{n-1}\right)$ number of conditions, and
(2) includes $((n-1)+\cdots+(n-n))$ number of conditions.

Thus total number is $\frac{n}{2}\left[2^{n}-(n+1)\right]$.
REMARK. 2. The example for $n=2$ is well-known, namely $|G|=15$. A natural question arises for $n>2$. To this end we exemplify the case $n=3$. Consider the group G where $|G|=7 \times 11 \times 13$ with the following conditions.
(a) $1+7 k \neq 11$
(b) $1+7 k \neq 13$
(c) $1+11 k \neq 13$
(d) $1+7 k \neq 11 \times 13$
(e) $1+11 k \neq 7 \times 13$
(f) $1+13 k \neq 7 \times 11$

Aligarh Muslim University, Aligarh, (India).

REFERENCE

[1] Baumslag B. and B. Chandler, Group Theory Schaum Outline Series, McGraw Hill Newyork 1968.

