Kyungpook Math. J. Volume 14, Number 1 June, 1974

A NOTE ON CYCLICITY OF GROUPS

By R.D. Giri

It is well known (see [1] p.133) that if $|G| = p_1 \cdot p_2$; $p_1 < p_2$ where p_i 's (i=1,2) are primes then group G is cyclic whenever $p_2 \neq 1 + kp_1$ for any nonzero integer k. We

generalize this fact by proving the following theorem.

THEOREM. Let G be a group of order $p_1 \cdot p_2 \cdots p_n$ where p_i 's are distinct ordered primes. If G satisfies the following $\frac{n}{2} [2^n - (n+1)]$ conditions: (1) $1 + kp_j \neq p_{\sigma(1)} \cdot p_{\sigma(2)} \cdots p_{\sigma(i)}; j \neq \sigma(i), \forall \sigma(i), 2 \leq i \leq n-1$ (2) $1 + kp_j \neq p_{\sigma(1)}; \sigma(1) = j+1, j+2, \cdots, n$,

where σ is a permutation on $\{1, 2, \dots, n\}$, k is any nonzero integer; then G is cyclic.

PROOF. In fact, (1) and (2) enable us to prove the existence of normal subgroups $C_{p_1}, \dots, C_{p_{n-1}}$ and $C_{p_n}(=K)$ say, of order p_1, p_2, \dots, p_{n-1} and p_n respectively. Orderedness of primes supplements with (1) and (2) that direct product $C_{p_1} \times \dots \times C_{p_n}$ is cyclic. The proof follows by using induction on n. If n=1 there is nothing to prove. For n=2 the theorem is well-known (cf. [1] p.133). Assume that $H=C_{p_1} \times$

 $C_{p_2} \times \cdots \times C_{p_{i-1}}$ is cyclic by induction hypothesis. Now we consider a group G of order $q \cdot p_n = (p_1 \cdots p_{n-1}) p_n$. The number of Sylow p_j -subgroups in G is $1 + k \cdot p_j$

which divides the order of G. For this there are following possibilities: (i) $1+k \cdot p_j = p_{\sigma(1)}; \sigma(1) \le j$ (ii) $1+k \cdot p_j = p_{\sigma(1)}; \sigma(1) = j+1, j+2, \dots, n$ (iii) $1+k \cdot p_j = p_{\sigma(1)} \cdot p_{\sigma(2)} \cdots p_{\sigma(i)}; j = \sigma(i)$ for some i but $j \ne \sigma(1), \dots, \sigma(i-1)$ (iv) $1+k \cdot p_j = p_{\sigma(1)} \cdot p_{\sigma(2)} \cdots p_{\sigma(i)}; j \ne \sigma(i), \forall \sigma(i)$ (v) $1+k \cdot p_j = 1$ for all $j=1, 2, \dots, n-1$

All possibilities are ruled out by (1) and (2) and only (v) remains which means that C_{p_i} is normal for $1 \le j \le n-1$. Now it is easy to prove that there exists a unique Sylow p_n -subgroup K, because out of the following four possibilities only last one persists and others are ruled out;

(i)' $1+k \cdot p_n = p_{\sigma(1)}; \sigma(1) \le n$

(ii)' $1+k\cdot p_n=p_{\sigma(1)}\cdot p_{\sigma(2)}\cdots p_{\sigma(i)}; \sigma(i)=n$ for some *i*

•

.

•

80 R.D. Giri (iii)' $1+k \cdot p_n = p_{\sigma(1)} \cdot p_{\sigma(2)} \cdots p_{\sigma(i)}; \ \sigma(i) \neq n, \forall \sigma(i)$ (iv)' $1+k \cdot p_n = 1$ Thus $H = C_{p_1} \times \cdots \times C_{p_{n-1}}$ and $K = C_{p_n}$ are normal in G and by the same arguements as we do in particular case when n=2 (see [1] p.133), we can easily show that G is cyclic of order $q \cdot p_n = p_1 \cdots p_n$. This completes the proof.

REMARK 1. If $|G| = p_1 \cdot p_2 \cdots p_n$ then the fact that number of conditions mentioned

in (1) and (2) are
$$\frac{n}{2} [2^n - (n+1)]$$
, can be verified as follows:
(1) includes $n(n-1C_2 + \dots + n-1C_{n-1})$ number of conditions, and
(2) includes $((n-1) + \dots + (n-n))$ number of conditions.
Thus total number is $\frac{n}{2} [2^n - (n+1)]$.

REMARK. 2. The example for n=2 is well-known, namely |G|=15. A natural question arises for n>2. To this end we exemplify the case n=3. Consider the group G where $|G|=7\times11\times13$ with the following conditions. (a) $1+7k\neq11$ (b) $1+7k\neq13$ (c) $1+11k\neq13$

(d) $1+7k \neq 11 \times 13$ (e) $1+11k \neq 7 \times 13$ (f) $1+13k \neq 7 \times 11$

Aligarh Muslim University, Aligarh, (India).

5

, **

[1] Baumslag B. and B. Chandler, *Group Theory* Schaum Outline Series, McGraw Hill Newyork 1968.