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LATTICE STRUCTURE OF GENERAL TOPOLOGICAL EXTENSIONS 

By T. Thrivikraman 

~ O. Introduction. 

In [7] , the author has characterised the epireflection 껴EX of a space X in an 

epireflective full subcategory E of the category T2 of all Hausdorff spaces, as 

the space of ‘the largest imagive determining type’ of nets in X modulo a natural 

equivalence, topologised in a natural way. In this paper we define E-extensions 
of E-regular spaces and study the lattice structure of the collection of all E

extensions under a natural order. They form an upper-complete semi-lattice. But 

further study is rather difficult in such a general set up. 80 we put some 

restrictions on the property E (we do not distinguish between ‘properties’ and 

‘full subcategories’ ) and/or on the spaces for which E-extensions are sought. 
We introduce the notion of generating families gE or E and study them in 

detail. In particular, we obtain certain partial results to the problem of wnen 

one-point-E-extensions exist. We also give certain equivalent forms of being 
hereditarily E when E has a strongly hereditary pseudoconvergent determining 

type of nets. 
The author is grateful to Dr. T. 80undararajan for the encouragement given 

during the preparation of this paper. 

CONVENTION. E is a full subcategory of T2 which is also assumed to be

epireflective unless otherwise stated. All spaces considered are objects of T2. 

~ 1. PreIiminaries. 

1.1. DEFINITION. A space X is said to be E-regular if it is homeomorphic toι 

a subspace of a product of spaces in E. 

1. 2. DEFINITION. Let X be a space. If Y is in E such that X is homeomorphic 

to a dense subset of Y , we say that Y is an E-extension of X. 

1. 3. DEFINITION. Let E be a subcategory of T2 not necessarily epireflective. 

Let NE associate to each space X , a class of nets NE(X) in X such that X has 

property E if and only if every net in NE(X) converges to some point in X ‘ 
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Then N E is called a deterη#ning type 01 nets 

NE. 

for E or that E is determined by 

REMARK. Determining types of nets have been 

author in [7]. We quote the following resuIts from 

extensively studied by the 

[7J. 

1. 4 RESUL T .. Let E be a full subcategory of T2. There exists a determining 

type of nets NE for E if and only if the empty space as well as the singleton 
space has E. 

1. 5. DEFINITION. The type of nets N is called imagive if whenever 1: X • Y is 
continuous, I(N(X))ζN(Y) ， where I(N(X)) = (loslsεN(X)}. 

1. 6 RESUL T. A full subcategory E of T2 is epireflective if and only if there 
exists arr imagive determining type of nets N E for E. 

NOTE. NE낀X)={sls is a net in X such that if Y is in E and/:X• Y any 

continuous map, then los converges in Y} , is ‘the largest imagive determining 

type of nets' for an epireflective subcategory E of T2. 

1. 7 REMARK. In [7] , the author has proved that the epireflection βEX is 

the space of equivalence classes of N E ;CX) topologised in a natural way. 

S 2. E-extensions of E-regular spaces and generating families for E. 

2.1 DEFINITION. Let X be an E-regular space and let aX, a' X be E-extensions 

of X. Then we say that aX드a' X if there exists a continuous map from a' X 

into aX, with identity on X. 

2.2 THEOREM. The collection 01 all E-extensions olan E-regμlar space X 

lorms a complete χ:pper semz"-lattz"ce μnder the partz"al order generated by the pre

order defz"ned above. 

PROOF. The proof is analogous to that in [1] for the corresponding theorem 

for compactifications. 

Let {aiX} iEJ be a family of E-extensions of X. To show that there exists an 

E-extension aX of X such that aX=yaiX. Let 1: X • IIiaiX be defined as I(x) = 

(ai(x))iεJ where ai(x) denotes the image of x in aiX under the homeomorphic 

embedding. It can be easily checked that 1 is a homeomorphism(cf. [5] Theorem 

2.1). Now cl.j(X)=aX is an E-extension, being a closed subspace of a product 

{)f spaces in E. Further aX늘깐X for each i in J since theprojection from aX 
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onto aiX is continuous and is identity on X. AIso if a' X is 

X such that a' X르aiX for every z', then a' X르aX since the 

function n i f ; suffices whereζ : a'X• aiX , Thus aX=ViaiX. 

an E-extension of 

product continuous 

NOTE. ßEX , the epireflection of X in E is the largest E-extension in this 

order. 1n particular, when X has E , then X is its own largest E-extension. 

REMARK. To get more information about the semilattice in this most gcncral 

set up is rather difficult. So we. introduce certain restrictions on the property E 

and/or on the spaces for which E-extensions are sought. We introduce the notion 

of a generating fam iIy for the property E. 

2.3 DEFINITION. A collection of spaces (Yi)iE! is called a generatz'ng famz'ly for 

E if the following happens: a space X has E if and only if X is homeomorphic 

to a closed subspace of a product of spaces (Yi)εK' KCJ. If there exists a finite 

(respectively singleton) generating family for E then E is said to be finitely 

(respectively singly) generated. 

EXAMPLE. (i). If 1 is the closed unit interval of reals, then (1) is a generating 

family for compactness. 

(ii) If J is the open unit interval of reals, then (J) is a generating fam iIy for 

realcompactness. 

(iii) The discrete dyad D forms a generating family (D) of being zero dimensional 

and compact. 

NOTE. It is not hard to see that a property E is finitely generated if and only 

if singly generated. Some singly generated epireflective full subcategories of T2 

are studied by S. Mrowka in [5]. 

2.4 RESUL T. The generating families for a property E form an upper complete 

semilattice under inclusion, This semilattice possesses minimal elements if and 

only îf E is singly generated. It is not necessarily a lattice even when E is 

singly generated. 

The first two statements can be proved easily. To justify the last st~tement， 

consider E=realcompactness. If J=(O, 1), then it is known that (J) is a 

generating family for E. It can be fairly easily proved that if K = [0, 1) , then 

(K) ;s also a generating family for E. (J) n(K)=rþ is clearly not a generating 

family. 

CONVENTION. In the rest of the paper gE stands for a typical generating family 
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for E. 

2.5 REMARK. Let E be a closed hereditary productive property. If we define 

NE(X) = {slfor any Y in gE and for any continuous function f: X • Y. fos is 

convergent in Y}. then it can be seen that N E is an imagive determining type 

of nets for E. Hence or independently it is seen that. N E is precisely N Ei' the 

largest imagive one. 
‘ 

2.6 DEFINITION. A subset A of X is said to be gE-embedded in X if every 

continuous function on A to any space Y in gE extends continuously to X. 

2.7 RESULT. If a closed subset A is gE-embedded in X. and βEX is the largest 

E-extension of X. then clßEXA=ßEA. 

The proof is easy and omitted. 

NOTE. The converse of Result 2.7 is not true. Example: E=reaIcompactness. 

gE= (J) where J is the open unit interval of reals and X is a non-normal real

compact space. 

2.8 DEFINITION. An E-regular space X is said to be gE-normal if every closed 

subset of X is gE-embedded in X. 

NOTE. gE-normal~normal. 

2.9 REMARK. Herrlich, H. [3) has defined a space to be E-normal if every 

disjoint pair of closed subsets in it is E-separated, i. e, if whenever A and B are 

disjoint closed subsets of X , there exists an E-space Y and a continuous function 

f: X • Y such that clf(A)nclf(B)=tþ. It can be easily seen that gE-normal~ 

E-normal for any generating family gE of E. Notice that any E-space is E

normal; but not necessarily gE normal. For example, R[xR[ where R[ is the set of 

reals with lower limit topology is reaIcompact and (reaIcompact)-normal in the 

sense of Herlich. But it is not gE-normal for any gE since it is not normal. 

Notice that in particular (R)-normal if and only if normal. (cf. [2) 3D1 (48)). 

Thus again, a converse of result 2.7 is not true; however a partial converse can 

be given as foIlows: 

2. 10 RESUL T. If X or βEX is gE normal, then whenever clβ.xY=ßEY， we 

have Y is gE-embedded in X. 

The proof is easy and omitted. 

NOTE. Now we come back to the consideration of the coIlection of E-extens-
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ions, and in particular, to the problem of existence of one-point-E-extensions. 

2.11 DEFINITION. A regular space X is called locally E if each point of X has 
a basis of E-neighbourhoods. 

2. 12 THEOREM. Let X be E -regμlar and ßEX regular. lf X is open in ßEX, 

then X is locally E. On the other hand, zf X is locally E and gE-normal for 

some generaUng family gE, then X is open in βEX. 

PROOF. Suppose X is open in ßEX; since βEX is regular, it follows that X is 

locally E. 

Conversely, suppose X is locally E. If X has E , then trivial, since, βEX=X 

in that case. If X does not have E , we consider ßEX as the space of equivalence 

classes of N EiCX) as in [7]. Suppose, if possible, s: D• ßEX is a net in ßEX

X converging to a point p in X. Then for each j in D, s(j) is a net in NEiCX) 

converging to a point s(j) in ß EX. Consider the product net P in X cor

responding to s. This product net P converges to þ. Take a neighbourhood V 

of p in ßEX such that VnX is closed in X and has E. The net P is eventually 

in vnX Csay) after Cmo./o)εDX n E ,.. Consider sCm) where m> mo. It can be 
zεD ‘ 

easily seen that this net which is a member of N E낀X) is eventually in VnX. 

But since X is gE-normal, by remark 2.5, it follows that sCm)εNE;CVnX). 

Now Vnx has E so that sCm) converges inside Vnx , which is a contradiction. 

Hence any net in ß EX - X converges in ß EX - X , if at all it converges. Hence 

X is open in ß EX. 

NOTE. X is open ßEX does not imply that X is gE normal for any gE. For 

example, suppose X is realcompact and non-normal. Then trivially X is open in 

νX=X. But since X is not normal, it is not gE-normal for any gE where E= 

rea떠lcomψp맹ac따tness. 

QUESTION. If X is E-regular and locally E , ßEX is regular and if either X or 

βEX is gE-normal, for some generator gE of E , then does it follow that X is 

open in 껴EX ? 

2. 13 DEFINITION. A property E is collapsible if for every space X which is a 

proper open subset of ß EX, the identification of ß EX - X to a point has E. 

2.14 RESULT. Let E be collapsible. Let X be E-regular and gE-normal. Suppose 

X does not have E. Further let ßEX be regular. Then X has a one-point-E-

• 

/ 
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extension, if and onIy if X is locally E. 

2.15 REMARK. If X has E and has a one-point-E-extension, then X is not 

E-closed. (we call a space E-closed, if it is closed in every space with E contain

ing it). On the other hand, if X is not E-closed, then a sufficient condition 

that a one-point-E-extension exists is that the union of a compact subset and any 

subset having E has again E. We will describe certain such situations in then 
next section. 

S 3. Pseudoconvergent determining types of nets and HereditariIy E spaces. 

3.1 DEFINITION. A determining type of nets NE is called strongly heredz'tary 

if whenever ACX, then NE(A)CNE(X) and furthermore if s is a net in A such 

that sεNE(X) then sENE(A). 

3.2 DEFINITION. A type of nets N is called pseμdoconvergent if every net in 

N(X) is pseudoconvergent for any X. 

CONVENTION. In this section we consider epireflective subcategories E of 

T2 such that E has a strongly hereditary pseudoconvergent determining type of 

nets NE. 

EXAMPLES. (for details see [6]) 

(i) E=compactness; NE= {Universal nets} or= {weakly open universal nets} 

(ii) E=α'-spaces;NE= {u-directed weakly open-universal nets}. 

(iii) E=α"-spaces; N E = {u-directed strongly closed-universal nets}. 

3.3 THEOREM. 11 NE is a1Z imagive strongly hereditary pseUdOC01Z1!erge1Zt 

determz'1Zing type 01 1Zets lor E and zf βEX is regμlar lor a1Z E’-regular spαce X , 

then X is ope1Z i1Z ßEX zf and o1Zly zf X is locally E. 

Proof easy and omitted. 

3.4 THEOREM. I/ X=YUZ μIhere Y has E and Z is compact, then X has E. 

PROOF. Let sEN E(X). If s is frequently in Z , then it has a convergent 

subnet and since s is pseudoconvergent, it follows that s converges. If s is 

eventually in cZCY, then sεNE(Y) since NE is strongly hereditary. Now 

since Y has E , s is convergent. Hence X has E. 

3.5. NOTE. See Remark 2. 15. 

3.6 THEOREM. The lollowing are equivale1Zt 01Z a space Y: 

(a) Y is hereditarily E , ι e. , every subspace 01 Y has E. 

(b) For each space X , zf there exists a ηzap 1: X • Y sztck tkat f 1(y) zs CO12ZPact 
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lor each y z'n Y , then Y has E. 

(c) Every space 01 μIhz'ch Y is a one-one contz'nμoμs tηzage， has E. 

(d) For each point y in Y , Y - {y} has E. 

77 

PROOF. Use Theorem 3.4 and proceed along the same lines as those of Theorem 

8. 17 in [2] (122). 

To show (c) implies (a) , the technique employed is the same, by noticing the 

foIIowing: GiveIi a subspace ZCY , by enlarging the topology of Y making Z and 

Y -Z open, the new space obtained is E-regular. 

3.7 COROLLARY. 111: X • Y z's one-one and conNnuous and z1 Y is heredi!arily 

E , then X z's hereditaγily E. 

3.8 NOTE. If every subspace of Y has E, and if card Y =m, then every 

discrete space of cardinality 드m has E. 

Mar A thanasius CoIIege, 
Kothamangalam 686666 

Kerala, India. 
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