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DIM~NSION OF AUTOMORPHIC 

FORMS OF EXTENDED KLEINIAN GROUP 

By Sang Moon Kim 

Introduction. 

In this paper we prove several identities about the autom. rphic forms of 

extended group. also we Observe that the Bers’ Area theorem and Ahlfors’ 

finiteness theorem of the Kleinian group extends naturally to the extended Kleinian 

group. 

We .list here some notations which we need in the sequel. . E denotes a non­

elementary extended group. and G is the maximal Kleinian group contained in 

E. A: (D. E) denotes the Banach space of holomorphic P-integ빼le automorphic 

fonn f weight - 2q. By D we denote an invariant union of region of discontinuity 

of E and by D/G (or D/E) we denote the corresponding orbit space of the group. 
All the other terminologies undefined in this paper one can see in Kim [13] or 

Kra [9]. 

Let G be a (non-elementary) Kleinian group and let D be an invariant union 

of components of the region of discontinuity of G. Then we have the follüwing 

lemma proved by Ahlfors (1). 

LEMMA 1. Let D/G=S-p where S z's a Riemann surface and pεS. Assume 

further that there isa punctured neighborhood V of p on S such that the natμral 

projectz'on π0: D .D/G z's μnramzfied over V. Then there exists a parabolic element 

BεG wz'th fz'xed poz'nt q. contaz'ned 쩌 the limit set of G. and there is a M öbius 

transformatz'on A with the following propeγties. 

(1) A(∞) = q and A -1 BA is the translation z• z+l. 

(2) A-1(D) contains the half plane Ue={zEC: Im(z)>e}, 

(3) two points 'z1 and z2 over A(U~) are equivalent under G if and only if 

z2=Bη(ZI) for some integer n. and 

(4) the image A(Ue) under πo is a deleted neighOorhood of P. homeomorÞhic to a 

þunctured disc. 
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We shall call p a parabolic pμnctμre. U e a half plane belongηzg to p and {z: 

Im (z)> e. 1> Real(z)르O} a cμsped region belonging to ψ. 

We are going to establish a similar lemma for a (non-elementary) extended 

group E. and we let D be an invariant union of components of the region of 

discontinuity of the group E. 

LEMMA 2. Let D/G=S-p where S is a Riemann surface (not necessarily connec­

ted) a%d p be a pa7abolzc pzt%ctztye. Let Ue be tke half pla%e coy7esP0%dz·%g to p. 

Let πo aηd π be natural projections 01 D onto D/G and D/E respectively. 

cr 

The% (Ue) has 0%e of the foll0%i%g ψroperties. Either 

(5) π(Ue) is conformally equivalent to π。(Ue) and two points zl and z2 of Ue are 

equivalent under E if and only zf z2=An(zl) where A is the parabolic element 

corresponding to P. and maps Ue into Ue’ 

(6) π(Ue) is a punctured half disk homeomoφhic to {z: Im(z)르o and z~O. Izl 

<1}. Two elements zl and z2 of Ue are equivalent under Eif and only if z2= 

k(Zl) for some element k z'n the sub~roup generated by A and g. where g is an 

antianalytic element which fixes a circle. Taking the conjugation by a M äbius 

transformation we can normalize so that A(z) =z+ 1 and g(z) = -z. 

PROOF. Let us assume that A is the parabolic element and has form A(z) =z+ 1, 
and Ue = {z: 1m (z)> e} be the half plane corresponding to p.Consider the following 

maps; 
z π1 

U/{A}-• D/G-•• D/E 

where i is the inclusion map and π1 is the natural projection. Note that π1 is a 

two-to-one map. Let E=GUH and suppose there is.no element in H which fixes 
∞. then gEH has the following form: 

g(z) =쯤팩， ad-bc=l , c~O and r(∞)=증· 

Then gAg-1 is a parabolic element fixing ~. and ~ is inequivalent to under 
c c 

group G. We observe that ~ corresponds to a new parabolic puncture and it has 
C 

g (Ue) as its half plane. Take xEUe and g(x)εg(U) then π。 (x) and π。(g(x)) are 

different points in D/G. Since π1 is a two-to-one map. we know that π1。z· is a 

one-to-one mapping on U/ {A} , and π1 (Ue) satisfies (5). New suppose there is an 

el얻ment in H which fixes ∞， then it can be written as g(z) =7et6ε +b. Since 

、

• 
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g '2 (Uc) nuc is not empty, we havei(z) = An(z) =z+n. By a simple calculation we 
i l} 

know that r="=1 and eWb+b is an integer. Furthermore, gAg- 1 fixes ∞， henc:: 

%ez6 is an integer and 6=O or π. We conclude g has one of the followinv fnrms: 

(8) g(z)=z+b, or 

(9) g(z) = -z+b where b is a real number. 

lf g has form (8) then 

Uk={z: Im(z)<-e-Ibl=찌 

1s also contained in D, and U k js a half plane corresponding to a parabolic punc. 

ture of D/G. lf Ue and U k are equivalent half planes under G, then there is an 

element in G which fixes ∞ and maps Ue into Uk' hence it must be an elliptic 

element of order two, let it be B(z) = -z+s. Then we have gB(z) = -z+b+s, a 

special case (f (7). Now if the above two half planes are inequivalent unçìer G, 

then by the fact that π1 is a two-to-one map, we , conclude that π。(U) satisfies 

(5). Since π1 is two-to-one, if there is an element of the form (9) then π1 CUe) is 

completely determined by the subgroup. generated by Aand g , and U/ {A, g} is 

conformally equivalent to the punctured half disc and satisfies (6). 

LEMMA 3. Let E be a (non-elementary) extended group and let p be a non-limit 

point 01 E. Then the subgroμ~p E ,. which consists 01 all elements lixing p, is eitlzer p 

generated by an elliptic element 01 fz"쩌te order 0γ generated by an elliptic element 

<Jllinite order and an anti-analytic element 01 order two. 

PROOF. Let E=GUGU and Gp=GnEp' Then it is known that Gp is gÈmerateJ 

by an elliptic element of finite -order (see Kra [9]). Now if Ep contains an anti­

analytic element V , then Ep= GpU GpV. Without loss of generality, we can assume 

that elliptic elements in Gp fix 0 and ∞. 

Let p=∞. then we have 
2 i l} i l} 

(10) V =e z, e zεGp. 

Then by a simple calculation, we know that 0=0 and V fixes 0 and ∞. Hence 

V is an element of order two. 

Let D be the region of discontinuity of E and let G be the maximal Kleinian 

group contained in E. Let π。 :D→D/G and π :D• D/E be the natural projection 

maps then π。 (π) is locally one-to-one except at the points which have nontrivial 

stabilizer subgroup Gz(Ez)' If at zG/Ez) has order n then π。(π) is n-to,1. 

Let D be as the above then we say D/G(D/E) is of li쩌te type if D/G(D/E) 
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consists of finite numbers of connected Riemann (Klein) surfaces. D contains a 

finite number of inequivalent e11iptic fixed points and each component of D/G(D/ 

E) is obtained by subtracting a finite number of points from a compact Riemann 

(Klein) surface (with boundary). 

For zεD if the order of G.=GnE. is n then we caI1 z an ellψtic 껴~xed þoint Z . .- Z 

olorder n. 

Let Dj be a connected component of the region of . iscontinuity of E and let 작 

be the group consisting of a I1 elements of E which map Dj into itself. Let Gj= 

EjnG• 

We shal1 say that D/GiD/Ej) has signature I=.{X; a1.a2 ..... anL if D/Gj 

(D/Ej) has Euler characteristic (-x). Dj contains k inequivalent elliptic fixed 

points of order a1' a2• …. ak respectively and D/GiD/Ej) misses exact1y n-k 

points from a compact Riemann (Klein) surface. where aH l' =. …, ;%=∞. l 

Let D be an invariant union of components of the region of discontinuity of E. 

then we define 

Area(D/G) = 2/L ，~À.~(z) 1 dz^dz 1. D/G"V 

Let D/G be a single Riemann surface with signature {x;a l'; … , a n}' then the' 

fol1owing is well known. see Kra [12]. 
n 

(11) Area (D/G)=2π {x+필(1- 1/멍} • 

찌Te define 

Area φ객)=2π D/E채(z) 1 dz^dz 1. 
Let D/G be a single Riemann surface of finite type and assume the natural‘ 

projection π1: D/G• D/E is two-to-one. 

Then we have 

(12) Area (D쩌 =융 Area (D/G). 

1n case (12) suppose D/E has signature 

{x; a1, a2• …. as' as+ l' …. at} • 

Let ÞkED/ E correspond to ak and suppose only {PS+ l' .... Pt} lie on the boundary 

of D/E. Then D/G has signature 

(13) {2x;a l1 , a12• …. as2' as+ l' …. at}. 

where aψ=ai for (z' =1. …. s) and (j=1.2). 

LEMMA 4. Let D be an inνayta%t μnion 01 the comþonents 01 the region 01 discon­

tinui낀• let D/E be a single Klein surlace with signature 



\ 
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{x;a L• a2• …. as' as+ l' …. a,}. 

and suppose only as+1' •••• at correspond 

the lollowing identity: 

to boundary points 01 D/E. Theη we have 

(14) Area (D/E) =2π {x+쇼 (1-1/￠)+÷ 소 (l-l/a;)}. 
i=1 “ i=s+ 1 • 

PROOF. Compare (11). (12) and (13). 

Let D be as in the above lemma. Henceforth we assume D/E is of finite typc. 

Let 

π1: D/G• D/E 

be the natural projection. We know that π1 is locally one-to-one except at the 

points which 1ie over the boundary of D/E. and over the boundary it is two-to-one. 

Hence. for any point tED/G and π1 (1) =PEDIE. we can choose local uniformizers 

T and Z at t and p respectively such that 

(15) z。πloT-l=identity

where it is defined. The relation (15) can be extended to D/G and D/E. 

Let I1εAa
。

(D， E) then we set 

l(z)=F(Z) dZ 
dz 

q 

where Z is a local parameter 

zεD 

at π(z) on D/E. Then F is a on 

D/E. By (15). as an application of the Kleinian group case. 

q-differential 

know that F we 

Let Gz be the stabilizer group of z as before. and let '1 

be the order of Gz ; then a is a function on D/E. We define a(p)=∞ for PE(l.Jl C: 

-D/E). For any real x we define [x] as the largest integer not greater than 

we have the 

can be extended to D/ E. 

x; then. as an application of the Kleinian group case (see Kra [9]). 

following two identities 

(16) order pF르- [q(l-l/a(p))]. O<a(p)<∞ 

and 

(17) order pF르1-q. if a(p)=∞. 

Following Kra [9]. we consider the fol1owing divisor 

(18) d(q)= L:T/n(P)P 
pεD/E ’ 

where η'/P)= [q(l- 1/a(p)] 

the q-differential defined above. 

divisor F -d(q)르O. 

a(p) <∞ and ηq(p)=1-q 

then 

if a(p)=∞. Let F be 

Conversely a meromorphic q-differential on -D/E which satisfies the above lifts 

@ 
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to a q-form [EA/D , E). 

THEOREM 4. Let D be an 쩌variant μnion o[ COmponef1.ts o[ the region o[ discon­

t낌짜ty o[ E , let D/E be o[ [i쩌te type and assume it has k-connected components. 

Let q be an integer, q는2 aχdp르1. Then μle have the [ollowing iden#ties: 

(19) At(D, E) =Ag(D, E) <∞ 

~ k 
(2이 A;-(D, E) 믿모AqCDj， Ej) 

dim A;(Dj， Ej)=(2q- l)x+2，~ [(q-q/ai)J 十 L; [(q-qj까)J 
i=l . i=s+l 

(21) 

μIhere D/Ej has signature 

{x;a" ar], ... , a .. , a~ J " ••• , aJ 1’ 2' '''''s’ s+1’ j 

and aS+l' …, af corresponds to boundary points o[ D/E; i[ ai=∞ then 쩌terpret 

[(q-q/ai)J =q-l. 

PROOF. Since A: (D, E)CA: (D, G) , and (19) is true for the Kleinian group 

case, hence it is true for ourcase also. (20) is clear. We prove (21) following 

Kra [9J. Let M be a divisor on D/Ej such that 

M= 온l”1싼+ 온l%1% 
where qj (boundary of 파/E) for j=l , 2, …, t and PiEï=(boundary of D/ Ej) for i = 

1, 2, …, s. Set 
、

M=z힐2뺑z 十gE%·

Call M the doμble of M. Let W be a linear differential on 끽EJ and 1et zu be 

the divisor of W and let ( η be the divisor of a meromorphic function [ on 낀혹· 

Set a=qw-d(q) and let l/a)=U: (f)+a는O} ; then by a simple calculation we have 

t/a)르Ar(Dj， El)· 

Let íl be the C:ouble of a then by the Riemann-Roch Theorem (see [l:?J ) \ve have 

dim !q(a) =deg α +dim(w-a)-x. 

deg íl= 2qx + 2ε [(q-q/ι)J +ε [(q-q/ι)] ， and by an application of the Kleinian 
i=l ’ i:s+l 

group case, we have deg (w-a)=O , see Kra [9]. Hence we have dimCw-a)=O 

、
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and we have the theorem. 

Following Bers [51. we have the following coroll. ry. 

COROLLARY 5. D/E is ollinite type then 

÷π lim AnCD.E)=AreaCD/E). 
'1 q→。o • 

61 

COROLLARY 6. G be the ηzaxz· ηzal Kleinz'an group contained in E then. we have 

Complex dim A qCD. G)=Real dim A';CD.E). 

Let E and G be as usual. We observe that E is finitely generated if and only' 

if G is. Also we know D/E is of finite type if and only if D/G is of finite type. 

Ahlfors'’ finiteness theorem says that if G is finitely generated then D/G is of 

finite type. It is clear that Ahlfors’ finiteness theorem extends to the extended 

group case also. F:or the Ahlfors’ finiteness theorem. see Ahlfors [1]. Bers [61 

• Ahlfors [2] and Kra [91. 
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