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ON SOME FIXED POINT THEOREMS 

By R. N. Mukherjee 

1. 1 Introduction. 

In . [1J Ray has given a theorem on fixed point of mappin1s in a metric space. 

Theorem is the following. 

THEOREM A. Let T 1 and T 2 be maps. each maPþing a complete ηzetγic space 

(E. d) into itsell sμch that 

(i) d(T1X, T2y)드αd(x， y); where 0<α <1 and x,y belong to E (x~y) and 

(ii) there is a point Xo in E such that any t1νo consecutiνe ηzembers 01 {x1 =T1 xo' 

x2=T 2xl , x3=T1x2, x4=T2x3' …} aγe distinct, then T 1 and T 2 have a unique 

common lixed point in E. 

We give below the definition of ê-chainable metric space as in reference [2J. 

DEFINITION. A metric space (E, d) will be said to be ê-chainable if for every 

x , y belonging to E there exists an ê-chain, i. e. a finite set of points x=xo' x1’ 

X2, ---, Xη=y (n may depend both on x and y) , such that d(깐-1’ xi) <ê, (z" = 1, 2, 

찌
 

We prove next the following theorem. 

THEOREM 1. 1. Let E be a complete ê-chaz'nable metric S.ψace; and let T 1 and T 2 
be two maps each mapping Einto itsell such that il o <d(x,y) <ê, then, 

(i) d(Tz'x, Tz'Y)드αd(x， y); i=1, 2. 

(ii) d(Tz'x, Tz'Y)드αd(x， y); i~j. 

where in (i) and (ii) x, y belong to E (x~y) and 0<α <1. Also T 1 and T 2 
satisly the condition (ii) 01 theorem A; then T 1 and T 2 have a common )당!'xed 

þoint z'n E. 

PROOF. Since (E, d) is ê-chainable we define for x, y belonging to E 

deCx,y)=inf 월 d (xi' xi_1) , 

where the infimum is taken over all ê-chains x". x,. X, 0’ l ’ 2’ 
and xn=y. Then d is a distance function in E satisfying: 

• • • Xn JOlmng Xo = X 
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(1) d(x, y) <d/x, y) 

(2) d(x , y)=d/x, y) for d(x, y)<e. 

From (2) it fo lIows that a sequence {x) , xnεE is a Cauchy sequence with respect 

to d
õ 

if and only if it is a cauchy sequence with respect to d and is convergent 

with respect to dõ if and only if it is convergent with respect to d. Since (E, d) 

is complete therefore (E, 깐) is a complete metric space. Moreover the folIowing 

1S true. 

Given x,y in E apd any s-chain XG, xl, x2, …, xn with xo=x and x，η =y such 

that d(xi , xi _1) <e (i=l , 2, "', n) we have (if n is even, say n=2) 

d(T1xO' 
T1x1)드αd(xo' x1) <ε 

d(T2x2, T1x1)드αd(x2’ x1) <e 

so that T 1xO’ T 1x1, T 2xZ form an e-chain for T 1xO and T 2x2• SimiIarly if n is odd(say 

n=3) we can show thatT1xO' 
T 2xl' T 1x2, T 2x3 form an e-chain for T 1xO' 

T 2x3
• 

Condition (i) is aIso necessary which can be seen by taking n=4. 

Combining aII the cases above it can be shown that 

d/T1x, T2끼드α침d(xi _ l' xi ) 

xo' xl' x2' "', xn=y being anarbitrary e-chain, 

therefore we have 

d/T1x, T2y)드αd/x， y) , 

and since T 1 and T 2 aIso satisfy the condition (ii) of theorem A therefore by the 

concIusion of theorem A we have the required. resuIt. • 

THEOREM 1. 2. Let E be a complete e-chainable metric space; αnd let T 1 and T Z 

be two maps each ηtapPing E z'nto itself. 11 there exists tμ10 integers P1 and p" such 

that zf 0 <d (x, y) <e, then 

(i) d(Tf x, T2F’y)드αd(x， y); i=1 , 2; 

(ii) d(Tt’ x , T쇠)드αd(x， y) ; 상j ; 

1ι，keye z% (i) ayzd (ii) x， yεE (x~y) and P<α<1. Also let Trl a%d T캉 satisfy the 

condition (ii) 01 theorem A , then T 1 and T 2 have a common /z'xed point. 

PROOF. Set Sl =양 and S2=T캉 • Then by theorem 1. 1 there exists a unique 

fixed P9int x such tha i: Sl (x) =S2(x) =X. , i. e. , rf' (x) =x=껴， 
(x). From which it 

foIIows that Tf
,+1(x)=T

1(x) , which in'I,Iies that Ti' (T1(x))=T1(x) , since T~' 

i 

‘ 

-
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has a unique fixed point, therefore T 1(x)=x. Similarly it follows that T2(x)=ι 

THEOREM 1. 3. Let E be a complete c-chainable metric space. Let T 1 and T 2 be 

two maPPings 01 E into itsell and suppose there exz"sts a map예ing K 01 E into , 

z"tsell sμch that K has a right inverse K- 1(i. e. , a lunction K sμch that K K- 1=I, 

where 1 z's the identüy mappz"ng 01 E) anq il O<d(x, y) <ε， then 

(i) d(K-1TiKx, K-1TzKy)드αd(x， y) ; z'=l , 2; 

(ii) d(K- 1T iKx, K-JTjKy)드αd(x， y) ; i oFj ; 

where in (i) and (ii) x, yεE (x낯y) and 0<α<1. Also s%Pjhose K-111lK afZd K-1T2 

K sa#sly the condi#on (ii) 01 theorem A. T hen T 1 and T 2 possess a common 자;xed 

point μIhz'ch z's uniψle. 

PROOF. Set K-1111K=S1 and K-1T2K=S2, then S1 and S2 have a common 

fixed point which is unique, by theorem 1.1. i.e. , K- 1T 1
K(x)=x=K- 1

T 2K(x) 

from which we get, KK- 1
T 1K(x)=K(x)o therefore T 1(K(x))=K(x). Similarly 

T 2(K(x))=K(x) , in other words T 1 and T 2 have a common fixed point K(x). 

Next we give a theorem on sequence of mappings and their fixed points. 

THEOREM 1.4. Let (E, d) be a complete metric 해a￠ a?zd let Ti ayzd Tg be t%01 

seqμences 01 maPPings each mapping E into z"tsell such that 

d(l싫 
where all ßk’ s are<윷 and posz"tiκ 

/ 

T 2 be mappz"ngs such that lim d(T삶， Tlx)=O a뼈 lim d(T삶， T 2x) =0, lor all x in 
k→∞ “ k→∞ … 

(say μ). 11 uk lor a /t"xed k 싫 the simultaneous /t"xed point 01 Tl and T~ (μIhiclz exists 

because 01 a theorem z'n [4]) then lim μ ι = μ. 
k→∞ ‘ 

PROOF. To prove the first part of the theorem we have only to show that 

T 1 and T 2 satisfy the inequality (*) as given below. 

Now, 

d(T1x, T감)드d(T1x， Tlx)+d(T끓， T침.1) +d(T값， T장) 
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2 
드d(Tx， T~x)+d(T;y， Ty)+βk {d(T~x， x) +d(TÏzY, y)} 

드d(T1x， T&x) +dray, T2y) +@ {d(Tkx, TIx) 

+d(T1x, 상+d(Tgy， T%)+d(T%, 씨} 

therefore as k→∞， since 

d(T갑， Tlx) • o and also d(T삶， T2x) • O 

we have 

d(T\, T2y)드β {d(T1x， X) +d(T2y, 씨 (*) 

1 _ _., .....2 Then by the theorem given in [3] T" and T"' both have a simultaneous fixed 

point in E (which we denote by μ say). Now to prove that lim U b=μ we proceed 
k→∞ ” 

‘as follows: Since μ is in E , fixing n=no we form the following sequence 

Xl=T;。 (%), x2=T2。 (Xl) , 점=T4(X2)， x4=T2。 (X3), 
then after little calculation as done in [4] , it can be shown that 

( ßno 
d(μ， TZ。 (μ)) 

’ 

from this it follows that 
k 

d(xk, xk+P) 드τ드τd(μ， Ti。 (%)) 

where 7- gno 
.1."'-' , - l-ßn。 ’ 

therefore there exists ι such that lim ι=ι . Now to show that 
“ , k→∞ ‘ “。

Tf (κ. )=κ” =T3 (%). 
“ o “ o uo ’‘o '''0 

We need the following inequality 

d(%。， T;。 (%。)〕드d(u"，’ xk)+d(xk’ T~， (Un)) 

=d(u",' x,) 十d(T~， (xk_ 1) , T!。 씨。))， 
where we choose k to be even positive integer. 

Therefore 
(? 1 、

d(%, T;。 (%n。))댁(un，' Xk)+β씨d(Xk _ 1 ， T~， (Xk_ 1)) +d(un,' T~， (Un))} 

i. e. , (1-4)d(%。， TL (%))드d(un，' xk)+ß",d(xk_ 1, Xk) 

and letting k→∞， we can prove that TL (%。)=%· That having proved we start 

. with the following inequality, 

’ 
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d(%。， Tg。 (%。))드d(%。， X1) +d(X1, T:。 (%。))

=d(%。， TZ。 (x)) +d(T;。 (%), Tg。 (%。))

드d(%。， T;。 (μ))+ßno {d(α， T;。 (μ))+d(uno' T;o (U~))} 

1.. e. , 

(1-&。)d(깐。， Tg。 (%。))드d(%。， T1(μ))+d(T1 (α) ， T;。 (μ))+ß"od(μ， T;。 (%)) 

]. e. , 

(1 -ßn)d(uno' T"o(μμ)드d(%。， %) +d(T1(μ). T~o (μ)) + ß"，d(T(μ) ， TZ。 @)) 

therefore as n(l→∞• d(ζ , μ)→0; which completes the proof. 
u “ O 

2. 1 In this section we give certain fixed point theorems on a generalized 

complete metric space. We give below the definition and the characterization of 

a generalized complete metric space as given in [5]. Theorem B and C men

tioned below have also been given in [5]. 

DEFINITION. The pair (E. d) is called a generalized comp!ete metrz-c space if E 

is a non-void set and d is a function from EXE to extended real numbers 

’satisfying the ~ollowing conditions: 

(DO) d(x.y)는O 

(Dl) d(x.y)=O iff x=y 

(D2) d(x. y)=d(y. x) 

(D3) d(x. y)드d(x. z)+d(z. y) 

(D4) every d-cauchy sequence in E is d-convergent. 1. e. , 

if {xη} is a sequence in E such that lim d(xn• x써 =0. then there is an xεE 
m.ll-→c。

with lim d(xn• X) =0. For convenience we will say that a pair (E. d) is a 
，，-→。。

generàlized metric space if all but (D4) of the above conditions are satisfied. Let 

{(Eα.dα)1 αεO} be a family of disjoint metric spaces. Then there is a natural 

way of getting a generalized metric space (E. d) from {(Ea• d) 1αEO} as 

iollows. 

For any x.YεE define 

d(x. y) =da(x. y) if x. yεEa for some α ε O 

=+∞ if xεEa and y ε Eß for some α.ß ε o with α해· 
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Clear1 y (E, d) is a generalized metric space. moreover if (Ea, dα) is complete

then (E, d) is a generalized complete metric space. The main purpose of the 

above procedure is to show that the above method is the only way to obtain 

generalized complete metric spaces. 

Let (E, d) be a Generalized Complete Metric Space. Define ~ on E as follows, 

x~y iff d(x, y) <∞. Then ~ is an equivalence relation on E. Therefore E is 

decomposed (uniquely) into disjoint equivalence classes Eα， αEO. From henceforth 

we will reserve the term ‘Canonical decomposition' for the type of decomposition 

as shown above. 

T iIEOREM B. Let (E, d) be a generalized metric space. E= U {E)αεO} thc. 

canonical decoηψoszïion and da=d I EαXEα lor each αεO. Then 

(a) lor αε0， (Ea, dα) is a metric space. 

(b) lor any α， ßEO z‘’ith α -:;6: ß ， d(x , y)=+∞ lor any xE Ea and yεEß 

(c) (E , d) z.s a generalized complete metric space illlor each αε0， (Ea, da) is 

a complete metric space. 

THEOREM C. Let (E , d) be a generaUzed metη·c space- E=U {Eα!αεO} the

canonical decompositíon and let T : E• E be a mappz"ng sμch that d(T(x) , T(y)) 

<∞ ...... (*) wheneνer x, yεE and d(x, y) <∞. T hen T has a lixed point 짜f T a= 

TIEα : Ea• Ea has a lixed point lor some αεO. 

We note that 전) is necessary for T to be a mapping from Eg→Eα· 

We prove next the following theorems. 

THEOREM 2. 1. Let (E , d) be a generaUzed complete metη·c space ; E= U {Eg l 
αεO} be the canonical decomposzïion. Let T 1 : E • EandT2 :E• E be tμ10 maPPings 

such that 

(a) d(T1x, T2y)덕{d(x， T써d(y， T갱)} lor all X，)댄 and Ü<ß<웅， 
(b) d(Tix, Tiy)드d(x， y) lor all x, yEE (x -:;6:y) , i= 1, 2 

d(Tix, Tjy)드d(x， y) lor all x, yεE(x -:;6:y) ， i -:;6:j; 

11 there exists an xOEE sμch that d(xO' TJxO)) <∞ lor i=l or 2 thenlor some αEO~ 

the restrictions 

T1α : T1IEa: Ea• Ea and T 2a : T2IEa: Ea• Ea 

satisfy the condition (a) above. 
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PROOF. 

Because of 

Let d(xo' T j (xo)) <∞， then both Zo and T j (xo) EE a。

(b) We have if X1εEao 
d(Th' Tjxo)드d(xj， xo) <∞ 

d(T2xj, Tjxo)드d(xj ， xo) <∞ 

for some α。εo.

also 

and therefore T j (E a) CEαo and T2(Eα。)CEa; From which it follows that T ja• 

and.T2α。 satisfy the condition (b) in Eα，· 

THEOREM 2. 2. Assumz'ng the same type 01 hy.양othesis as z'n theorem 2. 1 aboνe 

let XεE and consider the seqμence 01 successive approxima#on 

x1 =x, T j(x1)=x2, x3=TzCx2)' x4=T1(x3), x5=T2(x4) , .• :. 

Then the lollowing alterna#ve holds: either 

(A) lor every m=O, 1, 2,… , one has d(xm, xm+1) = +∞ 

or (B) the sequence {xm} is d-convergent to a simultaneoμs /t"xed point 01 T j aná 

T 2' 

PROOF. If (A) does not hold then for some m 

d(xm, xm+1) <∞ 

letting xm = xo' the theorem 2. 1 shows that T 1 (E a) CE，α and T2(E，α)CEα where 

Ea is the complete metric space containin:; XO' Therefore by the theorem men. 

tioned in section 1 of the present note also given in [4] , the sequence x…, xm+1, --

is d-convergent to a simultaneous fixed point of T 1a and T2α’ This implies that 

(B) holds. 

COROLLARY. Assumz'ng the same hypothesis lor the case 01 mapþt"ngs T 1 =T2= 

T(say) , let xεE and' consider the sequence 01 successive approximation wtÏh initial 

value x, 

T\, …, Tnx, ---x, Tx; T2x, 

then lollo따ng alternatt've holds, et"ther 

m+l (A) lor every m=O, 1, "', one has d(T"'x , T m
-t- 1X ) = +∞ 

07 (B) tke seqzee%ce, x, Tx, T2x, ---, Tmx, … is d-convergent to a lixeá 
point 01 T. 

PROOF. Proof is in the same line as in theorem 2.2. 

Suppose T be a mapping from a metric space E into itself. Also suppose T 

satisfies the conditions (AO) and (Al) below. 

‘ 

1 
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(AO) d(Tx, Ty)드αd(x， Tx)+ßd(y, Ty)+rd(x, y) 

where 0<α+ß+r<1. 

(Al) d(Tx, Ty)드d(x， y) , for all x, y ε E(x=py) 

then from a theorem of Reich [6] it follows that such a T has a unique fixed 

point in E. 

THEOREM 2.3. Let E be a generaUzed complete ηzetrz'c space. Suppose T be a 

mappz'ng Irom E z"nto zïsell sμch that z"t satisjz"es conditions (AO) and (A1) above. 

Let xεE and consider the seqμence 01 successz've approximatz"on: 

Xl=x, TX1=X2 3%l=X3 ; T혀=x4’ 
then the lolloψng alternatz"ve holds, ez"ther 

(a) lor every m=O, 1, 2, "', one has d(xm• xη+1)=∞ 

0γ 

(b) the seqμence {vm} z's d-convergent to a I z"xed poz"nt 01 T. 

PROOF. Proof is similar to the proof of theorem 2.2 above; only in this case 

w t:) apply finally the theorem of Reich [6]. 
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