ON SOME FIXED POINT THEOREMS

By R.N. Mukherjee

1.1 Introduction.

In [1] Ray has given a theorem on fixed point of mappinşs in a metric space. Theorem is the following.

THEOREM A. Let T_{1} and T_{2} be maps, each mapping a complete metric space (E, d) into itself such that
(i) $d\left(T_{1} x, T_{2} y\right) \leq \alpha d(x, y)$; where $0<\alpha<1$ and x, y belong to $E(x \neq y)$ and
(ii) there is a point x_{0} in E such that any two consecutive members of $\left\{x_{1}=T_{1} x_{0}\right.$, $\left.x_{2}=T^{2} x_{1}, x_{3}=T_{1} x_{2}, x_{4}=T_{2} x_{3}, \cdots\right\}$ are distinct, then T_{1} and T_{2} have a unique common fixed point in E.

We give below the definition of ε-chainable metric space as in reference [2].
DEFINITION. A metric space (E, d) will be said to be ε-chainable if for every x, y belonging to E there exists an ε-chain, i.e. a finite set of points $x=x_{0}, x_{1}$, $x_{2}, \cdots, x_{n}=y$ (n may depend both on x and y), such that $d\left(x_{i-1}, x_{i}\right)<\varepsilon,(i=1,2$, \cdots, n).

We prove next the following theorem.
THEOREM 1.1. Let E be a complete ε-chainable metric space; and let T_{1} and T_{2} be two maps each mapping E into itself such that if $0<d(x, y)<\varepsilon$, then,
(i) $d\left(T_{i} x, T_{i} y\right) \leq \alpha d(x, y) ; i=1,2$.
(ii) $d\left(T_{i} x, T_{i} y\right) \leq \alpha d(x, y) ; i \neq j$.
where in (i) and (ii) x, y belong to $E(x \neq y)$ and $0<\alpha<1$. Also T_{1} and T_{2} satisfy the condition (ii) of theorem A; then T_{1} and T_{2} have a common fixed point in E.

PROOF. Since (E, d) is ε-chainable we define for x, y belonging to E

$$
d_{\varepsilon}(x, y)=\inf \sum_{i=1}^{n} d\left(x_{i}, x_{i-1}\right)
$$

where the infimum is taken over all ε-chains $x_{0}, x_{1}, x_{2}, \cdots, x_{n}$ joining $x_{0}=x$ and $x_{n}=y$. Then d is a distance function in E satisfying:
(1) $d(x, y)<d_{\varepsilon}(x, y)$
(2) $d(x, y)=d_{\varepsilon}(x, y)$ for $d(x, y)<\varepsilon$.

From (2) it follows that a sequence $\left\{x_{n}\right\}, x_{n} \in E$ is a cauchy sequence with respect to d_{ε} if and only if it is a cauchy sequence with respect to d and is convergent with respect to d_{ε} if and only if it is convergent with respect to d. Since (E, d) is complete therefore (E, d_{ε}) is a complete metric space. Moreover the following is true.

Given x, y in E and any ε-chain $x_{0}, x_{1}, x_{2}, \cdots, x_{n}$ with $x_{0}=x$ and $x_{n}=y$ such that $d\left(x_{i}, x_{i-1}\right)<\varepsilon(i=1,2, \cdots, n)$ we have (if. n is even, say $n=2$)

$$
\begin{aligned}
& d\left(T_{1} x_{0}, T_{1} x_{1}\right) \leq \alpha d\left(x_{0}, x_{1}\right)<\varepsilon \\
& d\left(T_{2} x_{2}, T_{1} x_{1}\right) \leq \alpha d\left(x_{2}, x_{1}\right)<\varepsilon
\end{aligned}
$$

so that $T_{1} x_{0}, T_{1} x_{1}, T_{2} x_{2}$ form an ε-chain for $T_{1} x_{0}$ and $T_{2} x_{2}$. Similarly if n is odd(say $n=3$) we can show that $T_{1} x_{0}, T_{2} x_{1}, T_{1} x_{2}, T_{2} x_{3}$ form an ε-chain for $T_{1} x_{0}, T_{2} x_{3}$. Condition (i) is also necessary which can be seen by taking $n=4$.
Combining all the cases above it can be shown that

$$
d_{\varepsilon}\left(T_{1} x, T_{2} y\right) \leq \alpha \sum_{i=1}^{n} d\left(x_{i-1}, x_{i}\right)
$$

$x_{0}, x_{1}, x_{2}, \cdots, x_{n}=y$ being an arbitrary ε-chain,
therefore we have

$$
d_{\varepsilon}\left(T_{1} x, T_{2} y\right) \leq \alpha d_{\varepsilon}(x, y),
$$

and since T_{1} and T_{2} also satisfy the condition (ii) of theorem A therefore by the conclusion of theorem A we have the required result.

THEOREM 1.2. Let E be a complete ε-chainable metric space; and let T_{1} and T_{2} be two maps each mapping E into itself. If there exists two integers p_{1} and p_{Ω} such that if $0<d(x, y)<\varepsilon$, then
(i) $d\left(T_{i}^{\not{ }^{i}} x, T_{i}^{p i} y\right) \leq \alpha d(x, y) ; i=1,2$;
(ii) $d\left(T_{i}^{p_{i}} x, T_{j}^{p_{j}} y\right) \leq \alpha d(x, y): i \neq j$;
where in (i) and (ii) $x, y \in E(x \neq y)$ and $0<\alpha<1$. Also let $T_{1}^{D_{1}}$ and $T_{2}^{p_{2}}$ satisfy the condition (ii) of theorem A, then T_{1} and T_{2} have a common fixed point.

PROOF. Set $S_{1}=T_{1}^{p_{1}}$ and $S_{2}=T_{2}^{p_{2}}$. Then by theorem 1.1 there exists a unique fixed point x such that $S_{1}(x)=S_{2}(x)=x$., i. e., $T_{1}^{p_{1}}(x)=x=T_{2}^{b_{2}}(x)$. From which it follows that $T_{1}^{p_{1}+1}(x)=T_{1}(x)$, which in plies that $T_{1}^{p_{1}}\left(T_{1}(x)\right)=T_{1}(x)$, since $T_{1}^{p_{1}}$
has a unique fixed point, therefore $T_{1}(x)=x$. Similarly it follows that $T_{2}(x)=x_{\text {. }}$.
THEOREM 1.3. Let E be a complete ε-chainable metric space. Let T_{1} and T_{2} be two mappings of E into itself and suppose there exists a mapping K of E into itself such that K has a right inverse K^{-1} (i.e., a function K such that $K K^{-1}=I$, where I is the identity mapping of E) and if $0<d(x, y)<\varepsilon$, then
(i) $d\left(K^{-1} T_{i} K x, K^{-1} T_{i} K y\right) \leq \alpha d(x, y) ; i=1,2$;
(ii) $d\left(K^{-1} T_{i} K x, K^{-1} T_{j} K y\right) \leq \alpha d(x, y) ; i \neq j$;
where in (i) and (ii) $x, y \in E(x \neq y)$ and $0<\alpha<1$. Also suppose $K^{-1} T_{1} K$ and $K^{-1} T_{2}$. K satisfy the condition (ii) of theorem A. Then T_{1} and T_{2} possess a common fixed point which is unique.
PROOF. Set $K^{-1} T_{1} K=S_{1}$ and $K^{-1} T_{2} K=S_{2}$, then S_{1} and S_{2} have a common fixed point which is unique, by theorem 1.1. i.e., $K^{-1} T_{1} K(x)=x=K^{-1} T_{2} K(x)$. from which we get, $K K^{-1} T_{1} K(x)=K(x)$, therefore $T_{1}(K(x))=K(x)$. Similarly $T_{2}(K(x))=K(x)$, in other words T_{1} and T_{2} have a common fixed point $K(x)$.

Next we give a theorem on sequence of mappings and their fixed points.
THEOREM 1.4. Let (E, d) be a complete metric space and let T_{k}^{1} and T_{k}^{2} be two sequences of mappings each mapping E into itself such that

$$
d\left(T_{k}^{1} x, T_{k}^{2} y\right) \leq \beta_{k}\left\{d\left(T_{k}^{1} x, x\right)+d\left(T_{k}^{2} y, y\right)\right\}
$$

where all β_{k} 's are $<\frac{1}{2}$ and positive, and $x, y \in E(x \neq y)(k=1,2, \cdots)$. Let T^{1} and T^{2} be mappings such that $\lim _{k \rightarrow \infty} d\left(T_{k}^{1} x, T^{1} x\right)=0$ and $\lim _{k \rightarrow \infty} d\left(T_{k}^{2} x, T^{2} x\right)=0$, for all x in E. Also $\beta_{k} \rightarrow \beta\left(0<\beta<\frac{1}{2}\right)$ as $k \rightarrow \infty$. Then T^{1} and T^{2} have a common fixed point (say u). If u_{k} for a fixed k is the simultaneous fixed point of T_{k}^{1} and T_{k}^{2} (which exists because of a theorem in [4]) then $\lim _{k \rightarrow \infty} u_{k}=u$.

PROOF. To prove the first part of the theorem we have only to show that: T^{1} and T^{2} satisfy the inequality (*) as given below.

Now,

$$
d\left(T^{1} x, T^{2} y\right) \leq d\left(T^{1} x, T_{k}^{1} x\right)+d\left(T_{k}^{1} x, T_{k}^{2} y\right)+d\left(T_{k}^{2} y, T^{2} y\right)
$$

$$
\begin{aligned}
& \leq d\left(T^{1} x, T_{k}^{1} x\right)+d\left(T_{k}^{2} y, T^{2} y\right)+\beta_{k}\left\{d\left(T_{k}^{1} x, x\right)+d\left(T_{k}^{2} y, y\right)\right\} \\
& \leq d\left(T^{1} x, T_{k}^{1} x\right)+d\left(T_{k}^{2} y, T^{2} y\right)+\beta_{k}\left\{d\left(T_{k}^{1} x, T^{1} x\right)\right. \\
& \\
&
\end{aligned}
$$

therefore as $k \rightarrow \infty$, since

$$
d\left(T_{k}^{1} x, T^{1} x\right) \rightarrow 0 \text { and also } d\left(T_{k}^{2} x, T^{2} x\right) \rightarrow 0
$$

we have

$$
\begin{equation*}
d\left(T^{1} x, T^{2} y\right) \leq \beta\left\{d\left(T^{1} x, x\right)+d\left(T^{2} y, y\right)\right\} \tag{*}
\end{equation*}
$$

Then by the theorem given in [3] T^{1} and T^{2} both have a simultaneous fixed point in E (which we denote by u say). Now to prove that $\lim _{k \rightarrow \infty} u_{k}=u$ we proceed as follows: Since u is in E, fixing $n=n_{0}$ we form the following sequence

$$
x_{1}=T_{n_{0}}^{1}(u), x_{2}=T_{n_{0}}^{2}\left(x_{1}\right), x_{3}=T_{n_{0}}^{1}\left(x_{2}\right), x_{4}=T_{n_{0}}^{2}\left(x_{3}\right), \cdots
$$

then after little calculation as done in [4], it can be shown that

$$
d\left(x_{k}, x_{k+1}\right) \leq\left(\frac{\beta_{n_{0}}}{1-\beta_{n_{0}}}\right)^{k} d\left(u, T_{n_{0}}^{1}(u)\right)
$$

from this it follows that

$$
d\left(x_{k}, x_{k+p}\right) \leq \frac{r^{k}}{1-r} d\left(u, T_{n_{0}}^{1}(u)\right)
$$

where $r=\frac{\beta_{n_{0}}}{1-\beta_{n_{0}}}$,
therefore there exists $u_{n_{0}}$ such that $\lim _{k \rightarrow \infty} x_{k}=u_{n_{0}}$. Now to show that

$$
T_{n_{0}}^{1}\left(u_{n_{0}}\right)=u_{n_{0}}=T_{n_{0}}^{2}\left(u_{n_{0}}\right)
$$

We need the followins inequality

$$
\begin{aligned}
d\left(u_{n_{0}}, T_{n_{0}}^{1}\left(u_{n_{0}}\right)\right) & \leq d\left(u_{n_{0}}, x_{k}\right)+d\left(x_{k}, T_{n_{0}}^{1}\left(u_{n_{0}}\right)\right) \\
& =d\left(u_{n_{0}}, x_{k}\right)+d\left(T_{n_{0}}^{2}\left(x_{k-1}\right), T_{n_{0}}^{1}\left(u_{n_{0}}\right)\right)
\end{aligned}
$$

where we choose k to be even positive integer.
Therefore

$$
\begin{gathered}
d\left(u_{n_{0}}, T_{n_{0}}^{1}\left(u_{n_{0}}\right)\right) \leq d\left(u_{n_{0}}, x_{k}\right)+\beta_{n_{0}}\left\{d\left(x_{k-1}, T_{n_{0}}^{2}\left(x_{k-1}\right)\right)+d\left(u_{n_{0}}, T_{n_{0}}^{1}\left(u_{n_{0}}\right)\right)\right\} \\
\text { i. e. , }\left(1-\beta_{n_{0}}\right) d\left(u_{n_{0}}, T_{n_{0}}^{1}(u)\right) \leq d\left(u_{n_{0}}, x_{k}\right)+\beta_{n_{0}} d\left(x_{k-1}, x_{k}\right)
\end{gathered}
$$

and letting $k \rightarrow \infty$, we can prove that $T_{n_{0}}^{1}\left(u_{n_{0}}\right)=u_{n_{0}}$. That having proved we start with the following inequality,

$$
\begin{aligned}
d\left(u_{n_{0}}, T_{n_{0}}^{2}\left(u_{n_{0}}\right)\right) & \leq d\left(u_{n_{0}}, x_{1}\right)+d\left(x_{1}, T_{n_{0}}^{2}\left(u_{n_{0}}\right)\right) \\
& =d\left(u_{n_{0}}, T_{n_{0}}^{1}(u)\right)+d\left(T_{n_{0}}^{1}(u), T_{n_{0}}^{2}\left(u_{n_{0}}\right)\right) \\
\leq d\left(u_{n_{0}},\right. & \left.T_{n_{0}}^{1}(u)\right)+\beta_{n_{0}}\left\{d\left(u, T_{n_{0}}^{1}(u)\right)+d\left(u_{n_{0}}, T_{n_{0}}^{2}\left(u_{n_{0}}^{-}\right)\right)\right\}
\end{aligned}
$$

і. e. ,

$$
\left(1-\beta_{n_{0}}\right) d\left(u_{n_{0}}, T_{n_{0}}^{2}\left(u_{n_{0}}\right)\right) \leq d\left(u_{n_{0}}, T^{1}(u)\right)+d\left(T^{1}(u), T_{n_{0}}^{1}(u)\right)+\beta_{n_{0}} d\left(u, T_{n_{0}}^{1}(u)\right)
$$

i. e.,

$$
\left(1-\beta_{n_{0}}\right) d\left(u_{n_{0}}, T_{n_{0}}\left(u_{n_{0}}\right)\right) \leq d\left(u_{n_{0}}, u\right)+d\left(T^{1}(u), T_{n_{0}}^{1}(u)\right)+\beta_{n_{0}} d\left(T(u), T_{n_{0}}^{1}(u)\right)
$$

therefore as $n_{0} \rightarrow \infty, d\left(u_{n_{0}}, u\right) \rightarrow 0$; which completes the proof.
2.1 In this section we give certain fixed point theorems on a generalized complete metric space. We give below the definition and the characterization of a generalized complete metric space as given in [5]. Theorem B and C mentioned below have also been given in [5].

DEFINITION. The pair (E, d) is called a generalized complete metric space if E is a non-void set and d is a function from $E \times E$ to extended real numbers satisfying the following conditions:
(D0) $d(x, y) \geq 0$
(D1) $d(x, y)=0$ iff $x=y$
(D2) $d(x, y)=d(y, x)$
(D3) $d(x, y) \leq d(x, z)+d(z, y)$
(D4) every d-cauchy sequence in E is d-convergent, i. e.,
if $\left\{x_{n}\right\}$ is a sequence in E such that $\lim _{m, n \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$, then there is an $x \in E$ with $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$. For convenience we will say that a pair (E, d) is a generalized metric space if all but (D4) of the above conditions are satisfied. Let $\left\{\left(E_{\alpha}, d_{\alpha}\right) \mid \alpha \in O\right\}$ be a family of disjoint metric spaces. Then there is a natural way of getting a generalized metric space (E, d) from $\left\{\left(E_{\alpha}, d_{\alpha}\right) \mid \alpha \in O\right\}$ as follows.

For any $x, y \in E$ define

$$
\begin{array}{rlrl}
d(x, y) & =d_{\alpha}(x, y) & \text { if } x, y \in E_{\alpha} \text { for some } \alpha \in O \\
& =+\infty & & \text { if } x \in E_{\alpha} \text { and } y \in E_{\beta} \text { for some } \alpha, \beta \in O \text { with } \alpha \neq \beta
\end{array}
$$

Clearly (E, d) is a generalized metric space. moreover if (E_{α}, d_{α}) is completethen (E, d) is a generalized complete metric space. The main purpose of the above procedure is to show that the above method is the only way to obtain generalized complete metric spaces.
Let (E, d) be a Generalized Complete Metric Space. Define \sim on E as follows, $x \sim y$ iff $d(x, y)<\infty$. Then \sim is an equivalence relation on E. Therefore E is. decomposed (uniquely) into disjoint equivalence classes $E_{\alpha}, \alpha \in O$. From henceforth we will reserve the term 'Canonical decomposition' for the type of decomposition as shown above.

THEOREM B. Let (E, d) be a generalized metric space. $E=\bigcup\left\{E_{\alpha} \mid \alpha \in O\right\}$ the canonical decomposition and $d_{\alpha}=d \mid E_{\alpha} \times E_{\alpha}$ for each $\alpha \in O$. Then
(a) for $\alpha \in O,\left(E_{\alpha}, d_{\alpha}\right)$ is a metric space.
(b) for any $\alpha, \beta \in O$ with $\alpha \neq \beta, d(x, y)=+\infty$ for any $x \in E_{\alpha}$ and $y \in E_{\beta}$.
(c) (E, d) is a generalized complete metric space iff for each $\alpha \in O,\left(E_{\alpha}, d_{\alpha}\right)$ is a complete metric space.

THEOREM C. Let (E, d) be a generalized metric space. $E=\bigcup\left\{E_{\alpha} \mid \alpha \in O\right\}$ the. canonical decomposition and let $T: E \rightarrow E$ be a mapping such that $d(T(x), T(y))$ $<\infty \cdots \cdots(*)$ whenever $x, y \in E$ and $d(x, y)<\infty$. Then T has a fixed point iff $T_{\alpha}=$ $T \mid E_{\alpha}: E_{\alpha} \rightarrow E_{\alpha}$ has a fixed point for some $\alpha \in O$.

We note that $\left(^{*}\right)$ is necessary for T to be a mapping from $E_{\alpha} \rightarrow E_{\alpha}$. We prove next the following theorems.

THEOREM 2.1. Let (E, d) be a generalized complete metric space ; $E=\bigcup\left\{E_{\alpha}\right\}$ $\alpha \in O\}$ be the canonical decomposition. Let $T_{1}: E \rightarrow E$ and $T_{2}: E \rightarrow E$ be two mappings: such that
(a) $d\left(T_{1} x, T_{2} y\right) \leq \beta\left\{d\left(x, T_{1} x\right)+d\left(y, T_{2} y\right)\right\}$ for all $x, y \in E$ and $0<\beta<\frac{1}{2}$,
(b) $d\left(T_{i} x, T_{i} y\right) \leq d(x, y)$ for all $x, y \in E(x \neq y), \quad i=1,2$ $d\left(T_{i} x, T_{j} y\right) \leq d(x, y)$ for all $x, y \in E(x \neq y), \quad i \neq j$;
if there exists an $x_{0} \in E$ such that $d\left(x_{0}, T_{i}\left(x_{0}\right)\right)<\infty$ for $i=1$ or 2 then for some $\alpha \in O_{r}$, the restrictions

$$
T_{1 \alpha}: T_{1} \mid E_{\alpha}: E_{\alpha} \rightarrow E_{\alpha} \text { and } T_{2 \alpha}: T_{2} \mid E_{\alpha}: E_{\alpha} \rightarrow E_{\alpha}
$$

satisfy the condition (a) above.

PROOF. Let $d\left(x_{0}, T_{1}\left(x_{0}\right)\right)<\infty$, then both x_{0} and $T_{1}\left(x_{0}\right) \in E_{\alpha_{0}}$ for some $\alpha_{0} \in O$. Because of (b) we have if $x_{1} \in E_{\alpha_{0}}$

$$
d\left(T_{1} x_{1}, T_{1} x_{0}\right) \leq d\left(x_{1}, x_{0}\right)<\infty
$$

also

$$
d\left(T_{2} x_{1}, T_{1} x_{0}\right) \leq d\left(x_{1}, x_{0}\right)<\infty
$$

and therefore $T_{1}\left(E_{\alpha_{0}}\right) \subset E_{\alpha_{0}}$ and $T_{2}\left(E_{\alpha_{0}}\right) \subset E_{\alpha_{0}}$. From which it follows that $T_{1 \alpha_{0}}$ and $T_{2 \alpha_{0}}$ satisfy the condition (b) in $E_{\alpha_{0}}$.

THEOREM 2.2. Assuming the same type of hypothesis as in theorem 2.1 above let $x \in E$ and consider the sequence of successive approximation

$$
x_{1}=x, T_{1}\left(x_{1}\right)=x_{2}, x_{3}=T_{2}\left(x_{2}\right), x_{4}=T_{1}\left(x_{3}\right), x_{5}=T_{2}\left(x_{4}\right), \cdots .
$$

Then the following alternative holds: either
(A) for every $m=0,1,2, \cdots$, one has $d\left(x_{m}, x_{m+1}\right)=+\infty$
or (B) the sequence $\left\{x_{m}\right\}$ is d-convergent to a simultaneous fixed point of T_{1} and T_{2}.

PROOF. If (A) does not hold then for some m

$$
d\left(x_{m}, x_{m+1}\right)<\infty
$$

letting $x_{m}=x_{0}$, the theorem 2.1 shows that $T_{1}\left(E_{\alpha}\right) \subset E_{\alpha}$ and $T_{2}\left(E_{\alpha}\right) \subset E_{\alpha}$ where E_{α} is the complete metric space containin $; x_{0}$. Therefore by the theorem mentioned in section 1 of the present note also given in [4], the sequence x_{m}, x_{m+1}, \cdots is d-convergent to a simultaneous fixed point of $T_{1 \alpha}$ and $T_{2 \alpha}$, This implies that (B) holds.

COROLLARY. Assuming the same hypothesis for the case of mappings $T_{1}=T_{2}=$ T (say), let $x \in E$ and consider the sequence of successive approximation with initial value x,

$$
x, T x ; T^{2} x, T^{3} x, \cdots, T^{n} x, \cdots
$$

then following alternative holds, either
(A) for every $m=0,1, \cdots$, one has $d\left(T^{m} x, T^{m+1} x\right)=+\infty$
or (B) the sequence, $x, T x, T^{2} x, \cdots, T^{m} x, \cdots$ is d-convergent to a fixed point of T.

PROOF. Proof is in the same line as in theorem 2.2.
Suppose T be a mapping from a metric space E into itself. Also suppose T satisfies the conditions (A0) and (A1) below.

$$
\begin{gather*}
d(T x, T y) \leq \alpha d(x, T x)+\beta d(y, T y)+\gamma d(x, y) \tag{A0}\\
\text { where } 0<\alpha+\beta+\gamma<1 . \\
d(T x, T y) \leq d(x, y), \text { for all } x, y \in E(x \neq y) \tag{A1}
\end{gather*}
$$

then from a theorem of Reich [6] it follows that such a T has a unique fixed point in E.

THEOREM 2.3. Let E be a generalized complete metric space. Suppose T be a mapping from E into itself such that it satisfies conditions (A0) and (A1) above. Let $x \in E$ and consider the sequence of successive approximation:

$$
x_{1}=x, T x_{1}=x_{2} ; T^{2} x_{1}=x_{3} ; T^{3} x_{1}=x_{4}, \cdots
$$

then the following alternative holds, either
(a) for every $m=0,1,2, \cdots$, one has $d\left(x_{m}, x_{m+1}\right)=\infty$
or
(b) the sequence $\left\{v_{m}\right\}$ is d-convergent to a fixed point of T.

PROOF. Proof is similar to the proof of theorem 2.2 above; only in this case we apply finally the theorem of Reich [6].

State University of New York at Stony Brook
Stony Brook, New York.

REFERENCES

[1] Ray, B. On a paper of Kannan, Bull. Cal. Math. Soc. 63, pp7-10(1971)
[2] Edelstein, M, An extension of Banach's contraction principle, Proc. Amer. Math. Soc. 12, No. 1, 7-10, 1961
[3] Edelstein, M, On fixed and periodic points under contractive mapping, Journal London Math, Soc. 37, 74-79, 1962.
[4] Kannan, R, On a fixed point theorem in a metric space, Bull. Cal. Math, Soc. No. 1\&2. pp. 71-76, 1968.
[5] Jung, Calvin F. K., On Generalized Complete Metric Spaces, Bull. Am. Math. Soc. p. 113, Vol 75, 1969.
[6] Reich, S, Kannan's fixed point theorem, Boll. Unione. Math. Italy, 4(1971). 1-11.

