A DIFFERENTIABLE MANIFOLD WITH \boldsymbol{f}-STRUCTURE OF RANK \boldsymbol{r}

By R.S. Mishra.

Introduction.

Let us consider an n-dimensional real differentiable manifold V_{n} of differenti-ability class C^{r+1}. Let there exist in V_{n} a vector valued linear function f satisfying (1.1) a $\overline{\bar{X}}+\bar{X}=0$, for an arbitrary vector field X, where
(1.1) b

$$
\bar{X} \stackrel{\text { def }}{=} f(X),
$$

and

$$
\begin{equation*}
\operatorname{rank}(f)=r, \tag{1.2}
\end{equation*}
$$

is constant everywhere. Then f is called an f-structure of rank r and V_{n} is called: an n-dimensional manifold with a f-structure of rank r.

AGREEMENT (1.1). In the above and in what follows, the equations containingX, Y, Z, U hold for arbitrary vector field X, Y, Z, U etc.

The eigen values of f are given by

$$
\begin{equation*}
\lambda^{n-2 m}(\lambda+i)^{m}(\lambda-i)^{m}=0 . \tag{1.3}
\end{equation*}
$$

Three cases arise
Case 1. $\operatorname{rank}(f)=n$.
In this case (1.1)a reduces to

$$
\begin{equation*}
\overline{\bar{X}}+X=0 . \tag{1.4}
\end{equation*}
$$

n is even $=2 m$ and the eigen values are given by $(\lambda+i)^{\frac{1}{2} n}(\lambda-i)^{\frac{1}{2} n}=0 . V_{n}$ is said: to be an almost complex manifold and f is called an almost complex structure. Case 2. $\operatorname{rank}(f)=n-1$.
In this case, one of the eigen values is 0 , the corresponding eigen vector being: T, such that $\bar{T}=0$. Consequently from (1.1)a, we have

$$
\begin{equation*}
\overline{\bar{X}}+X=A(X) T, \tag{1.5}
\end{equation*}
$$

where A is a 1 -form. n is odd, say $n=2 m+1$ and the eigen values are given by $\lambda(\lambda+i)^{\frac{n-1}{2}}(\lambda-i)^{\frac{n-1}{2}}=0 . V_{n}$ is called an almost contact manifold and the structure (f, T, A) is called an almost contact structure.

Case 3. $\operatorname{rank}(F)=r, 1 \leq r \leq n-1$.
In this case there are $n-r$ repeated eigen values 0 , corresponding to which there is a pericil of eigen vectors. Let $T_{x}, 1 \leq x \leq n-r$ be a linearly independent set of eigen vectors corresponding to the eigen values 0 . Then

$$
\begin{equation*}
\bar{T}=0 \tag{1.6}
\end{equation*}
$$

Hence from (1.1)a, we have

$$
\begin{equation*}
\overline{\bar{X}}+X=\underset{x}{A}(X) T \tag{1.7}
\end{equation*}
$$

where ${ }_{x} A$ are arbitrary 1 -forms. r is even $=2 m$ say. The eigen values are given by

$$
\lambda^{n-2 m}(\lambda+i)^{m i}(\lambda-i)^{m}=0 .
$$

Barring X in (1.7) and comparing the resulting equation with (1.1)a, we get (1.8)

$$
{ }_{x}^{A}(\bar{X})=0 .
$$

Barring (1.6) and using (1.7), we get

$$
\begin{equation*}
\underset{y}{A}(T)=\delta_{y x} \tag{1.9}
\end{equation*}
$$

Let us put
(1.10) a) $l(X)=-\overline{\bar{X}}$,
b) $m(X)=\overline{\bar{X}}+X$.

Then it can be easily proved that
a) $l^{2}(X) \stackrel{\text { def }}{=} l(l(X))=l(X)$,
b) $m^{2}(X)=m(X)$,
c) $l(m(X))=m(l(X))=0$,
d) $l(\bar{X})=\overline{l(\bar{X})}=\bar{X}$,
e) $m(\bar{X})=\overline{m(X)}=0$,
f) $l(\overline{\bar{X}})=\overline{\overline{l(X})}=-l(X)$,
g) $X=l(X)+m(X)$,
h) $\operatorname{rank}(l)=r$,
i) $\operatorname{rank}(m)=n-r$.

Thus the operators l and m applied to the tangent space at each point of the manifold are complementary projection operators. There exist two complementary distributions Π_{r} and Π_{n-r} corresponding to l and m respectively, such that Π_{r} and Π_{n-r} are r and ($n-r$) dimensional.

2. Eigen vectors.

THEOREM (2.1). The eigen values of l are given by

$$
\begin{equation*}
\lambda^{n-r}(\lambda-1)^{r}=0 \tag{2.1}
\end{equation*}
$$

Let X be an arbitrary vector. Then \bar{X} is in the pencil of eigen vectors corresponding to the eigen value 1 and $\overline{\bar{X}}+X$ is in the pencil of eigen vectors corresponding to the eigen value 0 .

PROOF. Let λ be an eigen value of l and p be the corresponding eigen vector. "Then

$$
l(P)=\lambda P, l^{2}(P)=\lambda^{2} P
$$

Plugging in these in (1.11)a, we get (2.1). Remaining part of the statement follows from (1.11)d and (1.11)c and (1.10)b.

THEOREM (2.2). The eigen values of m are given by

$$
\begin{equation*}
\lambda^{r}(\lambda-1)^{n-r}=0 . \tag{2.2}
\end{equation*}
$$

Let X be an arbitrary vector. Then \bar{X} is in the pencil of eigen vectors corresponding to the eigen value 0 and $\overline{\bar{X}}+X$ is in the pencil of eigen vectors corresponding to the eigen value 1 .

The proof follows the pattern of the proof of Theorem (2.1).
THEOREM (2.3). Let $\left\{\begin{array}{l}P \\ Q\end{array}\right.$ be an eigen vector of l corresponding to the eigen value $\left\{\begin{array}{l}0 \\ 1 .\end{array}\right.$ Then $\left\{\begin{array}{l}\bar{P}=0 \\ \bar{Q}+Q=0 .\end{array}\right.$ Consequently $\left\{\begin{array}{l}P \\ Q\end{array}\right.$ is an eigen vector of f corresponding to the .eigen value $\left\{\begin{array}{l}0 \\ \pm i \text {. }\end{array}\right.$

PROOF. Since P is an eigen vector of l corresponding to the eigen value 0 , $l(P)=0 \Leftrightarrow-\overline{\bar{P}}=0 \Leftrightarrow \bar{P}=0$.

Since Q is an eigen vector of l corresponding to the eigen value $1, l(Q)=Q \Leftrightarrow \overline{\bar{Q}}$ $+Q=0$. Remaining part of the proof is obvious.

THEOREM (2.4). Let $\left\{\begin{array}{l}p \\ q\end{array}\right.$ be an eigen vector of m corresponding to the eigen value $\left\{\begin{array}{l}1 \\ 0 .\end{array}\right.$ Then $\left\{\begin{array}{l}\bar{p}=0 \\ \bar{q}+q=0 .\end{array}\right.$ Consequently $\left\{\begin{array}{l}p \text { is an eigen vector of } \dot{f} \text { corresponding to the } \\ q\end{array}\right.$. eigen value $\left\{\begin{array}{l}0 \\ \pm i\end{array}\right.$.

The proof follows the pattern of the proof of Theorem (2.4).
COROLLARY (2.1). Let P be an eigen vector of l. Then $\bar{p}=\overline{\bar{p}}=\cdots=0$.
Proof. We have

$$
l(P)=\lambda P
$$

whence

$$
\overline{l(P)}=\lambda \bar{P} .
$$

In consequence of (1.11)d, this equation takes the form

$$
l(\bar{P})=\lambda \bar{P}
$$

Hence, we have the statement.

3. f-structure.

THEOREM (3.1). f-structure is not unique. Let μ be a non-singular vector valuea ${ }^{7}$ linear function in $V_{n^{\prime}}$. Then f^{\prime} defined by

$$
\begin{equation*}
\mu\left(f^{\prime}(X)\right) \stackrel{\text { def }}{=} \overline{\mu(X)} \tag{3.1}
\end{equation*}
$$

is also f-structure.
PROOF. In consequence of (3.1) and (1.1), we have
(3.2)a

$$
\overline{\left.\overline{\mu\left(f^{\prime}(X)\right.}\right)}=-\overline{\mu(X)}=-\mu\left(f^{\prime}(X)\right) .
$$

Also from (3.1), we get

$$
\begin{equation*}
\overline{\left.\left.\overline{\mu\left(f^{\prime}(\bar{X}\right.}\right)\right)}=\mu\left(f^{\prime}(X)\right)=\mu\left(f^{\prime 3}(X)\right) . \tag{3.2}
\end{equation*}
$$

From (3.2)a, b, we have

$$
\mu\left(f^{\prime 3}(X)+f^{\prime}(X)\right)=0
$$

Since μ is non-singular,

$$
f^{\prime}(X)+f^{\prime}(X)=0
$$

which proves the statement.
THEOREM (3.2). We have

$$
\begin{gather*}
\mu\left(l^{\prime}(X)\right)=l(\mu(X)) \tag{3.3}\\
\mu\left(m^{\prime}(X)\right)=m(\mu(X)) \tag{3.4}
\end{gather*}
$$

PROOF. In consequence of (3.1) and (1.10)a, we have

$$
\left.\left.\mu\left(l^{\prime}(X)\right)=-\mu\left(f^{\prime 2}(X)\right)=-\overline{\mu\left(f^{\prime}(X)\right.}\right)=-\overline{\overline{\mu(X}}\right)=l(\mu(X)) .
$$

Hence, we have (3.3). Similarly

$$
\mu\left(m^{\prime}(X)\right)=\mu\left(f^{\prime 2}(X)\right)+\mu(X)=\overline{\overline{\mu(X)}}+\mu(X)=m(\mu(X))
$$

In the manifold with f-structure V_{n}, we can always introduce a metric tensor g. Let g satisfy
(3.5)a $\quad g(\bar{X}, \bar{Y})=-g(\overline{\bar{X}}, Y)=-g(X, \overline{\bar{Y}})$.

We are justified in assuming g as above, because of the following two considerations.
(i) g is symmetric
(ii) Repeated operation of barring X or Y in 3.5)a yields the same set equa: tions and there is no contradiction.
Let us put

$$
\begin{equation*}
' m(X, Y)=g(m(X), Y)=g(X, m(Y)) \tag{3.6}
\end{equation*}
$$

Then (1.17) assumes the form

$$
\begin{equation*}
g(\bar{X}, \bar{Y})=g(X, Y)-^{\prime} m(X, Y) \tag{3.5}
\end{equation*}
$$

The equations (3.5)a, b are also equivalent to

$$
\begin{equation*}
g(\overline{\bar{X}}, \overline{\bar{Y}})=g(\bar{X}, \bar{Y}) \tag{3.5}
\end{equation*}
$$

We also have

$$
(3.5) \mathrm{d}
$$

$$
g(\bar{X}, \overline{\bar{Y}})+g(\overline{\bar{X}}, \bar{Y})=0
$$

which in consequence of (1.10)b and (3.6) assumes the form

$$
g(X, \bar{Y})+g(\bar{X}, Y)=0
$$

Theorem (3.3). Let us put
(3.7)

$$
g^{\prime}(X, Y)=g(\mu(X), \mu(Y))
$$

Then g^{\prime} also satisfies an equation of the type (3.5), that is (3.8) a

$$
g^{\prime}\left(f^{\prime}(X), f^{\prime}(Y)\right)=g^{\prime}(X, Y)-m^{\prime}(X, Y)
$$

where
(3.8)b

$$
' m^{\prime}(X, Y)=g^{\prime}\left(m^{\prime}(X), Y\right)=g^{\prime}\left(X, m^{\prime}(Y)\right)
$$

PROOF. In consequence of (3.7), (3.1), (3.5)b, (3.6) and (3.4)

$$
\begin{aligned}
g^{\prime}\left(f^{\prime}(X), f^{\prime}(Y)\right) & =g\left(\mu\left(f^{\prime}(X)\right), \mu\left(f^{\prime}(Y)\right)\right) \\
& =g(\mu(X), \overline{\mu(Y)}) \\
& =g(\mu(X), \mu(Y))-^{\prime} m(\mu(X), \mu(Y)) \\
& =g^{\prime}(X, Y)-g(m(\mu(X)), \mu(Y)) \\
& =g^{\prime}(X, Y)-g\left(\mu\left(m^{\prime}(X)\right), \mu(Y)\right) \\
& =g^{\prime}(X, Y)-g^{\prime}\left(m^{\prime}(X), Y\right) \\
& =g^{\prime}(X, Y)-m^{\prime}(X, Y) .
\end{aligned}
$$

4. Integrability conditions.

We will prove the following theorem:
THEOREM (4.1). The necessary and sufficient condition that V_{n} be an n-dimensional differentiable manifold with a f-structure of rank $2 m$ is that it contains a distribution \mathbb{I}_{m} of complex dimension m a distribution $\tilde{\Pi}_{m}$ complex conjugate to \mathbb{I}_{m} and a distribution $\Pi_{n-2 m}$ of real dimension $n-2 m$, such that $\Pi_{m}, \Pi_{m}, \Pi_{n-2 m}$ have no direction in common and span together a linear manifold of dimension n.

PROOF. It can be proved by usual method that in an n-dimensional differentiable manifold with a f-structure of rank $2 m$, there is a distribution Π_{m} of complex dimension m, a distribution $\tilde{\Pi}_{m}$ complex conjugate to Π_{m} and a distribution $\Pi_{n-2 m}$
of real dimension $n-2 m$, such that Π_{m}, Π_{m} and $\Pi_{n-2 m}$ have no direction in common and span together a linear manifold of dimension n, projections on Π_{m}, $\tilde{\Pi}_{m}$ and $\Pi_{n-2 m}$ being given by L, M, m respectively, such that

$$
\begin{gather*}
2 L(X)=-\overline{\bar{X}}-i \bar{X}, \tag{4.1}\\
2 M(X)=-\overline{\bar{X}}+i \bar{X}, \tag{4.2}\\
m(X)=\overline{\bar{X}}+X . \tag{4.3}
\end{gather*}
$$

That the conidition is sufficient can also be proved similarly
Let $\underset{x}{P}, \underset{x}{Q}, T, 1 \leq x \leq m, x, y \in N, 1 \leq a \leq n-2 m$ be the linearly independent eigen vectors corresponding to the eigen values $i,-i, 0$ of f. Then
(4.4)
a) $L(P)=P$,
b) $L(Q)=0$,
c) $L(T)=0$,
(4.5)
a) $M(\underset{x}{P})=0$,
b) $M(\underset{x}{ })=\underset{x}{ }$,
c) $M(T)=0$,
(4.6)
a) $m(P)=0$
b) $m(Q)=0$,
c) $m(T)=T$

The equations (4.5), (4.6) and (4.6) can be written in the tabular form as follows.

		$\left({ }_{x}\left({ }^{\text {P }}\right.\right.$	(Q)	$(\underset{a}{T}$
(4.4)	L	P	0	0
(4.5)	M	0	Q	0
(4.6)	m	0	0	T

Now, $\{\underset{x}{P}, \underset{x}{Q}, \underset{a}{T}\}$ is a L.I. set. The inverse set $\underset{x}{x}, \underset{\sim}{x}, A$ is then given by

		(P)	(Q)	$\left(\begin{array}{c}T \\ b\end{array}\right.$
(4.7)	$\stackrel{x}{p}$	δ_{y}^{x}	0	0
(4.8)	$\stackrel{x}{q}$	0	δ_{y}^{x}	0
(4.9)	$\stackrel{a}{A}$	0	0	δ_{b}^{a}
(4.10)		$q(X)$	X) ${ }_{a}$	

THEOREM (4.2). We have

$$
\begin{equation*}
L(X)=p \underset{x}{x}(X) P \tag{4.11}
\end{equation*}
$$

PROOF. From (4.1) and (4.2), we have

$$
\begin{equation*}
\bar{X}=i\{L(X)-M(X)\} \tag{4.14}
\end{equation*}
$$

$$
\begin{equation*}
\overline{\bar{X}}=-L(X)-M(X) \tag{4.15}
\end{equation*}
$$

Also from (4.10) we have

$$
\begin{equation*}
\bar{X}=i \stackrel{x}{\{p(X) \underset{x}{P}-\underset{\substack{x \\ x}}{x}(X) Q} \tag{4.16}
\end{equation*}
$$

(4.17)

$$
\begin{equation*}
\overline{\bar{X}}=-\underset{x}{x}(X) \underset{x}{P}-\stackrel{x}{q}(X) \underset{x}{Q} \tag{4.17}
\end{equation*}
$$

From the equations (4.14)-(4.17) we have (4.11) and (4.12). In consequence of (4.1), (4.2) and (4.3) we have

$$
\begin{equation*}
X=L(X)+M(X)+m(X) \tag{4.18}
\end{equation*}
$$

From (4.10), (4.18), (4.11) and (4.12), we have (4.13).
THEOREM (4.3). We have
(4.19)a $L(M(X))=L(m(X))=M(L(X))=M(m(X))=m(L(X))=m(M(X))=0$,
(4.19)b

$$
L^{2}(X)=L(X), M^{2}(X)=M(X), m^{2}(X)=m(X)
$$

PROOF. The proof is obvious.
Corollary (4.1). We have
(4.19)e

$$
\begin{array}{r}
L(\mu(X))=\mu\left(L^{\prime}(X)\right) \tag{4.19}\\
M(\mu(X))=\mu\left(M^{\prime}(X)\right) \\
m(\mu(X))=\mu\left(m^{\prime}(X)\right) .
\end{array}
$$

(4.19)d

PROOF. We have

$$
\begin{aligned}
2 \mu\left(L^{\prime}(X)\right) & =-\mu\left(f^{2}(X)\right)-i \mu\left(f^{\prime}(X)\right)=-\overline{\mu\left(f^{\prime}(X)\right)}-i \mu\left(f^{\prime}(X)\right) \\
& =-\overline{\overline{\mu(X})}-i \overline{\mu(X)}=2 L(\mu(X)) .
\end{aligned}
$$

We can similarly prove (4.19)d.
Ishihara and Yano (1964) obtained the integrability conditions for the distributions Π_{r}, Π_{n-r}. We will obtain the integrability conditions for the distributions $\Pi_{m}, \tilde{\Pi}_{m}$ and $\Pi_{n-2 m}$. For this we prove the following lemmas.

Lemma (4.1)a. We have

$$
\begin{align*}
& M(X)=\stackrel{x}{q}(X) \underset{x}{Q}, \tag{4.12}\\
& m(X)=\stackrel{a}{A}(X) \underset{a}{a} . \tag{4.13}
\end{align*}
$$

$$
\begin{aligned}
2(d L)(m(X), m(Y)) & =\overline{\overline{N(\bar{X}, \bar{Y}})}-\overline{\overline{\overline{N(X, Y}})}-\overline{\overline{N(\bar{X}, Y})}-\overline{N(X, \bar{Y}}) \\
& +i\{\overline{\overline{N(\bar{X}, \bar{Y}})}-\overline{\overline{N(X, Y})}+\overline{\overline{N(\bar{X}, Y})}+\overline{\overline{N(X, \bar{Y}})}\}
\end{aligned}
$$

(4.20)b $\quad 2(d M)(m(X), m(Y))=\overline{\overline{N(\bar{X}, \bar{Y}})}-\overline{\overline{N(X, Y})}-\overline{N(\bar{X}, Y)}-\overline{N(\overline{X, \bar{Y}})}$

$$
-i\{\overline{N(\bar{X}, \bar{Y})}-\overline{N(X, Y})+\overline{\overline{N(\bar{X}, Y})}+\overline{\overline{\overline{N(X, \bar{Y}}})}\}
$$

where N is Nijenhuis tensor given by

$$
\begin{equation*}
N(X, Y)=[\bar{X}, \bar{Y}]+\overline{\overline{[X, Y}}]-[\overline{\bar{X}, Y}[-[\overline{X, \bar{Y}}] \tag{4.21}
\end{equation*}
$$

PROOF. In consequence of (4.19), we have

$$
\begin{aligned}
(d L)(m(X), m(Y)) & =m(X)(L(m(Y)))-m(Y)(L(m(X)))-L([m(X), m(Y)]) \\
& =-L([m(X), m(Y)])
\end{aligned}
$$

But, by virtue of (4.1), (4.3) and (4.4) we have
(4.23) $2 L([m(X), m(Y)])=2 L([\overline{\bar{X}}, \overline{\bar{Y}}])+2 L([\overline{\bar{X}}, Y])+2 L(X, \overline{\bar{Y}}])+2 L([X, Y])$

$$
\begin{aligned}
= & -\{[\overline{\overline{\overline{\bar{X}}, \overline{\bar{Y}}}}+[\overline{\overline{\overline{\bar{X}}, Y}]}+\overline{\overline{\overline{X, \overline{\bar{Y}}}}]+[\overline{\overline{X, Y}}]}\} \\
& -i\{[\overline{\overline{\bar{X}}, \overline{\bar{Y}}}]+[\overline{\overline{\bar{X}}, Y}]+[\overline{X, \overline{\bar{Y}}}]+\overline{[X, Y}]\} \\
= & -\{\overline{\overline{N(\bar{X}, \bar{Y}})}-\overline{\overline{\overline{N(X, Y}})-\overline{N(\bar{X}, Y})-\overline{N(X, \bar{Y}})\}} \\
& -i\{\overline{N(\bar{X}, \bar{Y}})-\overline{\overline{N(X, \bar{Y}})+\overline{\overline{N(\bar{X}, \bar{Y}}})+\overline{\overline{N(X, \bar{Y}})}}\}
\end{aligned}
$$

Substituting from (4.23) in (4.22), we obtain (4.20)a. (4.20)b can similarly be obtained.

LEMMA (4.1)b. We also have
(4.24) a

$$
(d L)(m(X), m(Y))=-\stackrel{a}{A}(X) \stackrel{b}{A}(Y) \stackrel{x}{p}([\underset{a}{T}, \underset{b}{T}]) p_{x}
$$

(4.24)b

$$
(d M)(m(X), m(Y))=-\stackrel{a}{A}(X) \stackrel{b}{A}(Y)^{z} \underset{a}{q}([T, T]) \underset{b}{a}
$$

PROOF. In consequence of (4.22), (4.13) and (4.4) we have

$$
\begin{aligned}
& (d L)(m(X), m(Y))=-L([m(X), m(Y)]) \\
& =-L \stackrel{a}{A}(X) \stackrel{b}{A}(Y) \underset{a}{T}, \underset{b}{T}]+\stackrel{a}{A}(X) \underset{a}{T}(\stackrel{b}{A}(Y)) \underset{b}{T} \\
& -\stackrel{b}{A}(Y) \underset{b}{T} \stackrel{a}{A}(X)) \underset{a}{a}=-\stackrel{a}{A}(X) \stackrel{z}{A}(Y) \underset{a}{p}\left(\left[T, T_{b}\right]\right) p_{z}
\end{aligned}
$$

We similarly have (4.24)b.
LEMMA (4.1)c. We also have
(4.25)a

$$
2(d L)(m(X), m(Y))=\overline{[\overline{m(X), m(Y)}]}+i \overline{[m(X), m(\bar{Y})}]
$$

(4.25)b

$$
2(d M)(m(X), m(Y))=[\overline{\overline{m(X), m(Y)}}]-i[\overline{m(X), m(Y)}]
$$

The proof is obvious.
LEMMA (4.2) We have
(4.26)a

$$
2(d L)(M(X), M(Y))=[\overline{\overline{M(X)}}, \overline{M(Y)}]+i[\overline{M(X), M(\bar{X})]}
$$

(4.26)b $\quad 2(d M)(L(X), L(Y)):=\overline{\overline{[L(X)}}, \overline{\bar{L}(Y)]}-i \overline{[L(X), \overline{L(Y)}]}$,

(4.27)b
(4.28)a

$$
2(d M)(L(X), L(Y))={ }_{p}^{x}(X) p(Y)\left\{[\overline{\overline{p, p},}]_{x}^{-1}-i\left[\overline{p_{x}, p}\right]\right\}
$$

(4.28)b

$$
4(d L)(M(X), M(Y))=\overline{\overline{N(\bar{X}, \bar{Y}})}+i \overline{N(\bar{X}, \bar{Y})}
$$

The proof follows the pattern of the proof of Lemma (4.1).
LEMMA (4.3). The following equations are satisfied

$$
\begin{equation*}
(d m)(L(X), L(Y))=-\stackrel{x}{A}([L(X), L(Y)]) \underset{x}{x} \tag{4.29}
\end{equation*}
$$

(4.29)b

$$
(d m)(M(X), M(Y))=-\stackrel{x}{A}([M(X), M(Y)]) T
$$

(4.30)a
(4.31)a

$$
\begin{align*}
& (d m)(L(X), L(Y))=\stackrel{z}{A}(N(X, Y)) T A_{z}^{z}(N(\bar{X}, \bar{Y})) T_{z} \tag{4.30}\\
& +i \stackrel{z}{i}(N(\bar{X}, Y)) \underset{z}{T}+\stackrel{z}{A}(N(X, \bar{Y})) \underset{z}{T},
\end{align*}
$$

(4.31)b

$$
\begin{aligned}
(d m)(M(X), M(Y)) & =A^{z}(N(X, Y)-N(\bar{X}, \bar{Y})) \underset{z}{T} \\
& +i\{A(N(\bar{X}, Y)+N(X, \bar{Y})) T\}
\end{aligned}
$$

The proof follows the pattern of the proof of Lemma (4.1).
THEOREM (4.4). In order that $\Pi_{n-2 m}$ be integrable, it is necessary and sufficient that
(4.32) a equivalent to
(4.32)b

$$
\overline{N(\bar{X}, \bar{Y})}-\overline{N(X, Y})+\overline{\overline{N(\overline{\bar{X}}, Y})}+\overline{\overline{N(X, \bar{Y}})}=0 .
$$

or
or
(4.34)a
equivalent to
(4.34)b

$$
\overline{[m(X), m(Y)]}=0
$$

PROOF. The distribution $\Pi_{n-2 m}$ is given by
(4.35)
a) $L(X)=0$,
b) $M(X)=0$,
c) $X=m(X)$.

In order that $\Pi_{n-2 m}$ be completely integrable it is necessary and sufficient that $L(X)=0, M(X)=0$ be completely integrable, that is
(4. 36)
a) $(d L)(X, Y)=0$,
b) $(d M)(X, Y)=0$,
be satisfied by any vector satisfying (4.35)c. Substituting from (4.35)c into (4.36)a, b we get
(4.37)
a) $(d L)(m(X), m(Y))=0$,
b) $(d M)(m(X), m(Y))=0$.

Using (4.37) in (4.20), (4.24), (4.25), we obtain (4.32), (4.33) and (4.34). respectively.

THEOREM (4.5). In order that Π_{m} and Π_{m} are completely integrable it is necessary and sufficient that
(4.38) a

$$
[\overline{\overline{L(X)}, \overline{L(\bar{Y})}}]=i[\overline{[\overline{L(X}), \overline{L(Y)}}]
$$

(4.38)b
(4.38)c
(4.38)d
or
(4.39) a
(4.39)b
(4.39)c
(4.39)d
or
(4. 40) a

$$
\left.\stackrel{x}{p}(X) p(Y)\left\{\overline{\overline{[p, p]}}-i \overline{\sum_{x}}-\bar{x}, p_{y}\right]\right\}=0
$$

$$
\stackrel{x}{p(X)} \stackrel{y}{p}(Y) \stackrel{a}{A}([\underset{x}{[}, P])=0
$$

$$
\stackrel{x}{q(X)} \stackrel{y}{q(Y)}\{\underset{x}{[\overline{\overline{Q, Q}]}}+i \underset{\underset{y}{[\overline{Q, Q}]}}{\underset{y}{y}}\}=0
$$

(4.40)b

$$
\begin{gathered}
\overline{N(\bar{X}, \bar{Y}})=0 \\
a \\
A(N(X, Y))=\stackrel{a}{A}(N(\bar{X}, \bar{Y}))
\end{gathered}
$$

PPOOF. The distribution Π_{m} is given by
(4.41) a) $M(X)=0$, b) $m(X)=0$, c) $X=L(X)$.

In order that Π_{m} be completely integrable, it is necessary and sufficient that M^{r} $=0$ and $m=0$ be completely integrable, that is
(4.42)
a) $(d M)(X, Y)=0$,
b) $(d m)(X, Y)=0$,
be satisfied by any vector satisfying (4.41)c. Substituting from (4.41)c in (4.42). a, b, we get
(4.43)
a) $(d M)(L(X), L(Y))=0$,
b) $(d m)(L(X), L(Y))=0$.

By virtue of (4.43)a, b, the equations. (4.26)b and (4.29)a, assume the forms (4.38)a, b. Similarly (4.38)c, d are the necessary and sufficient conditions for the integrability of $\tilde{\Pi}_{m^{*}}$. It can similarly be proved that (4.39)a,b are the necessary and sufficient conditions for the integrability of Π_{m} and (4.39)c, d are the necessary. and sufficient conditions for the integrability of $\widetilde{\Pi}_{m^{*}}$

From (4.43) a and (4.28)b, we have
(4.44)a

$$
\overline{\overline{N(\bar{X}, \overline{\bar{Y}}})}-i \overline{N(\bar{X}, \overline{\bar{Y}})}=0
$$

From (4.43)b and (4.31)a, we have

$$
\begin{equation*}
\{\stackrel{a}{A}(N(X, Y)-N(\dot{\bar{X}}, \bar{Y}))\} \underset{a}{T}+i\{\stackrel{a}{A}(N(\bar{X}, Y)+N(X, \bar{Y}))\} \underset{a}{T}=0 \tag{4.44}
\end{equation*}
$$

We can similarly have when we consider the integrability of $\tilde{\Pi}_{m}$
(4. 45) a

$$
\overline{\overline{N(\bar{X}, \overline{\bar{Y}}})}+i \overline{N(\bar{X}, \bar{Y})}=0
$$

$$
\begin{equation*}
[\stackrel{a}{A}(N(X, Y)-N(\bar{X}, \bar{Y}))-i\{\stackrel{a}{A}(N(\bar{X}, Y)+N(X, \bar{Y}))\}] \underset{a}{T}=0 \tag{4.45}
\end{equation*}
$$

Thus from (4.45)a and (4.45)b the necessary and sufficient condition for the integrability of $\Pi_{m}\left(\tilde{\Pi}_{m}\right)$ are (4.40).

THEOREM (4.6). In order that V_{n} be completely integrable, it is necessary and: sufficient that

$$
\begin{array}{lc}
(4.46) \mathrm{a} & \overline{N(X, \bar{Y}})=0 \\
(4.46) \mathrm{b} & : \\
A(N(X, Y))=\stackrel{a}{A}(N(\bar{X}, \bar{Y}))=0 .
\end{array}
$$

PROOF. (4.46) follows from (4.40) and (4.32).
THEOREM (4.7). The necessary and sufficient condition that a differentiable manifold V_{n} with an f-structure be integrable is that it is possible to introduce an. affine connexion D with respect to which f is covariant constant and which is such
.that
(4.47) a

$$
\overline{S(\bar{X}, \bar{Y})}=0
$$

(4.47)b

$$
\stackrel{a}{A}(S(\bar{X}, \bar{Y}))=\stackrel{a}{A}(S(\overline{\bar{X}}, \overline{\bar{Y}}))
$$

where S is the torsion tensor of D.
PROOF. Let B be a symmetric connexion in V_{n} and D another connexion. Let

$$
\begin{equation*}
D_{X} Y=B_{X} Y+H(X, Y) \tag{4.48}
\end{equation*}
$$

Let us assume
(4.49) a

$$
\left(D_{X} f\right)(Y)=0
$$

equivalent to
(4.49)b

$$
D_{X} \bar{Y}=\overline{D_{X} Y}
$$

Using (4.48) in (4.49)b, we get

$$
\overline{B_{X} \bar{Y}}-B_{X} \bar{Y}=H(X, \bar{Y})-\overline{H(X, \bar{Y})}
$$

whence

$$
\begin{equation*}
\overline{\overline{H(\bar{X}, \overline{\bar{Y}})}}+\overline{H(\bar{X}, \bar{Y})}=-\overline{B_{X} \overline{\bar{Y}}}-\overline{\overline{B_{\bar{X}}^{\overline{\bar{Y}}}}} \tag{4.50}
\end{equation*}
$$

'Since by barring Y and the whole equation, we again have the same equation, we shall attempt a solution of this equation. The general solution of this equation is given by

$$
\text { (4.51)a } \overline{4 H(\bar{X}, \bar{Y})}=-\overline{2 B_{\bar{X}} \bar{Y}}-2 \overline{\overline{B_{\bar{X}}}}+\overline{W\left(\Lambda^{\prime}, \bar{Y}\right)}-\overline{\overline{W(\bar{X}, \overline{\bar{Y}})}},
$$

where W is an arbitrary vector valued bilinear function. For,
(4.51)b

$$
\overline{\overline{4 H(\bar{X}, \overline{\bar{Y}})}}=-2 B_{\overline{\bar{X}}}^{\overline{\bar{Y}}}-\overline{2 B_{\bar{X}} \bar{Y}}+\overline{\overline{W(\bar{X}, \overline{\bar{Y}}})}-\overline{W(\bar{X}, \bar{Y})}
$$

whence by adding the last two equations, we obtain (4.50).
Let us put

$$
\overline{2 W(\bar{X}, \bar{Y})}=-\overline{\overline{B_{\bar{Y}}} \overline{\overline{\bar{X}}}}-\overline{B_{\bar{Y}} \bar{X}}-\overline{B_{\overline{\bar{Y}}} \overline{\bar{X}}}+\overline{\overline{B_{\overline{\bar{Y}}} \bar{X}}}
$$

Then

$$
\overline{\overline{2 W(\bar{X}, \overline{\bar{Y}})}}=\overline{B_{\overline{\bar{Y}}} \overline{\bar{X}}} \overline{\overline{B_{\overline{\bar{Y}}} \bar{X}}}+\overline{\overline{B_{\bar{Y}} \overline{\bar{X}}}}+\overline{B_{\bar{Y}} \bar{X}}
$$

Consequently (4.51)a can be written as

$$
\overline{4 H(\bar{X}, \bar{Y})}=-2 \overline{B_{\bar{X}} \bar{Y}}-2 \overline{\overline{B_{\bar{X}} \overline{\bar{Y}}}}-\overline{B_{\overline{\bar{Y}}} \overline{\bar{X}}}-\overline{B_{\bar{Y}} \bar{X}}-\overline{\overline{B_{\bar{Y}} \overline{\bar{X}}}}-\overline{B_{\bar{Y}} \bar{X}}
$$

From this equation we have

$$
\begin{aligned}
\overline{4 S(\bar{X}, \bar{Y})} & =-\overline{B_{\bar{X}} \bar{Y}}+\overline{B_{\bar{Y}} \bar{X}}-\overline{\overline{B_{\bar{X}} \overline{\bar{Y}}}}+\overline{\overline{B_{\bar{Y}} \overline{\bar{X}}}}-\overline{\overline{B_{\bar{Y}} \overline{\bar{X}}}+\overline{\overline{B_{\overline{\bar{X}}}^{\bar{Y}}}}+\overline{\overline{B_{\bar{Y}} \bar{X}}}-\overline{B_{\overline{\bar{X}}} \bar{Y}}} \\
& =\overline{N(\overline{\bar{X}}, \bar{Y}}) .
\end{aligned}
$$

If V_{n} is integrable $\overline{N(X, Y)}=0$. Consequently we have (4.47)a.
From (4.48) and (4.49), we have

$$
\begin{aligned}
& \stackrel{a}{A}(H(\bar{X}, \bar{Y}))=-\stackrel{a}{A}\left(B_{\bar{X}} \bar{Y}\right), \\
& \stackrel{a}{A}(H(\overline{\bar{X}}, \overline{\bar{Y}}))=-\stackrel{a}{A}\left(B_{\overline{\bar{X}}}^{\bar{Y}}\right) .
\end{aligned}
$$

Consequently

$$
\begin{aligned}
\stackrel{a}{A}(-S(\bar{X}, \bar{Y})+S(\overline{\bar{X}}, \overline{\bar{Y}})) & \stackrel{a}{A}\left(B_{\bar{X}} \bar{Y}-B_{\bar{Y}} \bar{X}\right)-\stackrel{a}{A}\left(B_{\overline{\bar{X}}}^{\overline{\bar{Y}}}-B_{\overline{\bar{Y}}} \overline{\bar{X}}\right) . \\
& =a(N(X, Y))-\stackrel{a}{A}(N(\bar{X}, \bar{Y})) .
\end{aligned}
$$

If V_{n} is integrable $\stackrel{a}{A}(N(X, Y))=0$ and we have (4.47)b.
Ishihara and Yano (1964) obtained the integrability conditions of $\Pi_{2 n}$ and $\Pi_{n-2 m}$ as

$$
m(N(X, Y))=0
$$

and

$$
N(m(X), m(Y))=0,
$$

respectively. We will obtain these in other forms. It can be proved on the lines of the proof of Theorem (4.5), that the necessary and sufficient conditions that Π_{m} be integrable is that

$$
m([l(X), l(Y)])=0
$$

equivalent to

$$
[\overline{\overline{\bar{X}}, \overline{\bar{Y}}]}+[\overline{\overline{\bar{X}}, \overline{\bar{Y}}]}=0
$$

or

$$
[\overline{\overline{\bar{X}}, \overline{\bar{Y}}}]+[\bar{X}, \bar{Y}]=0 .
$$

This equation is equivalent to

$$
\begin{equation*}
N(X, Y)+\overline{\overline{N(X, Y})}=0 . \tag{4.52}
\end{equation*}
$$

Similarly the necessary and sufficient condition that $\Pi_{n-2 m}$ be integrable is

$$
l([m(X), m(Y)]=0,
$$

which is equivalent to

$$
\begin{equation*}
[\overline{\overline{\bar{X}}, \overline{\bar{Y}}]}+[\overline{\overline{\bar{X}}, Y}]+[\overline{\overline{X, \overline{\bar{Y}}}]}+[\overline{\overline{X, Y}}]=0, \tag{4.53}
\end{equation*}
$$

or

$$
\overline{\overline{N(\bar{X}, \bar{Y}})}-\overline{\overline{N(X, Y})}-\overline{N(\bar{X}, Y)}-\overline{N(X, \bar{Y})}=0
$$

or
(4.54) a $\overline{\overline{N(\bar{X}, \bar{Y}})}-\overline{\overline{N(X, Y})}+\overline{\overline{N(\bar{X}, Y})}+\overline{\overline{\overline{N(X, \bar{Y}})}}=0$.

From (4.52) and (4.54)a it is clear that the necessary and sufficient condition that V_{n} be integrable is

$$
N(X, Y)=0
$$

a condition obtained by Ishihara and Yano (1964).
It is interesting to note that (4.53) is also equivalent to

$$
(4.54) \mathrm{b} \quad N(\overline{\bar{X}}, \overline{\bar{Y}})+N(X, Y)+N(\overline{\bar{X}}, Y)+N(X, \overline{\bar{Y}})=0
$$

From (4.52) and (4.54)b, we again get the same necessary and sufficient condition for the integratibly of V_{n}.

Banaras Hindu University, Varanasi India

