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FLOW BETWEEN PARALLEL DISKS
By Satya Prakash

Introduction.

The effects of porous boundaries on steady laminar flow have been studied for
different geometries. The flow in a straight channel with porous walls has been
considered by Berman [1], Proudman (2], Terrill [3], Sellar [4], Yuan [5], and
several others. Berman [6), has also considered the flow in a porous circular
pipe and In a porous annulus. Prakash [7] has considered the flow along a
corner bounded by two porous parabolic walls and the flow through a channel
bounded by two confocal porous parabolic walls. Rasmussen [8] has considered

the flow between two parallel porous equal coaxial disks when the inflow or the
outflow at the disks are equal. He has studied the flow near the axis of

symmetry on the assumption that the distance between the disks 1s very small
compared to their radius. In the present paper, the author considers the flow
between two disks when the inflow or the outflow at the porous disk is prescribed
and the other disk is not porous. Here also the flow near the axis of symmetry has
been studied on the assumption that the distance between the disks 1s very small
tcbmpared to their radius. It has not been possible to obtain explicit solutions of
the above problem for all values of the Reynolds number. Therefore attempt has
been made to obtain approximate solutions of the problem for specialized values
of the Reynolds number. Solutions of the problem for small Reynolds number

have been obtained by the use of an asymptotic series. And then some conclusion
have been derived.

Formulation of the Problem.

Consider steady incompressible laminar viscous flow between two parallel coaxial
stationary circular disks of radius R distant L apart when the inflow or the
outflow at the porous disk is prescribed and the other disk is not porous. Suppose

that L is very small in comparison with R. Take z-axis along the axis of sym-
metry and x, y-axes along two mutually perpendicular lines in a plane perpendicular
to the z-axis. Let 7,0, z denote the radial, azimuthal and axial coordinates of a
point in the region of flow. Let % and v be the components of the fluid velocity
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in the axial and radial directions respectively. And assume that the component
of the fluid velocity in the azimuthal direction is zero. The boundary conditions
for the problem under consideration are
#=0 at z=0 and #=F2 at z=L for 0<r<R (1)
v=0 at 2=0 and =0 at z=L for 0<7<R (2)
It follows in view of the conditions (1) and (2) that # and v will be independent

of 6. Hence the equation of continuity and the equations of motion in the present
case reduce to

5+ =0 3
e
0=—— -2 > (4)
G B B S 5

/’

Here o is the fluid density, v is the coefficient of kinematic viscosity and 2 1S
the fluid pressure.
As L is very small in comparison with R, it is reasonable to expect that =
depends only on z for <R and therefore we may take
| u=2F(2) (5)
Substituting this value of # in egqn. (3), we get

1 0 PN
~ 5, (rv)+2F (2)=0

Integrating, we get
v=—7yF’(2)+c/7, | (6)

where ¢ is an arbitrary constant.
As v should be finite at =0, we must have ¢=0. Hence eqn. (6) gives

v=—7rF"(2) (7)
Substituting the values of # and » given by eqgns. (5) and (7) in the third of

the eqns. (4), we obtain

AF@F ()= =3+ 20F"(2)

Integrating and noting that p is independent of @ as is seen from the second
of the egns. (4), we have

2F2(z)= —f’ F2uF () +o(7), (8):
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where ¢(r) is an arbitrary function of 7.
Substituting the values of #,» and p given by eqns. (5),(7), (8) in the first
of the eqns (4), we get after simplification,

OF ()F"(2)— F2(2) ~ yF"(2) = - 42

ry dr (9)

Now as the left-hand side of eqn. (9) is a function of z only and its right-hand’
side is a function of 7 only it follows that each side must be equal to a constant:

quantity and therefore we have
OF(2)F"(2)— F*(z)—uF"(2)=k. (10)
where % is a constant quantity. | |

. Pifferentiating eqn. (10) with respect to z, we have |
2F(2)F"(z2)—vF"”(2)=0 (11):

From eqns. (1) and (2), we see that boundary conditions on F(z) become |
F(2)=0 at z=0 and F(2)=FV at z=L (12)
F’(z)=0 at z=0 and F’(z)=0 at z=L ) (13)

Now we shall rewrite the eqns. (11), (12), (13) in dimensionless form. For this,.
we take a characteristic length Z and a characteristic velocity V. Introducing

f(§)= FT(/’Z) and §=—- | (14)
the egns. (11), (12), (13) become | |
2fEF @)~ f " E)=0, (15)
where R=V L/v is the Reynolds number. |
f(E)=0 at £€=0 and f(E)=7F1 at &=1 (16)
f(E)=0 at £=0 and f/(§€)=0 at £=1 (17)

Since eqn. (15) is nonlinear, it is not possible to obtain its explicit solutions:
satisfying conditions (16) and (17) for all values of the Reynolds numper. We
shall obtain approximate solutions of this problem for the cases when the
porous disk is subjected to injection and when it is subjectedfto suction on the:
assumption that the Reynolds number is small.

Porcus Disk with Injeection.

When the porous disk is subjected to injection, the boundary value problem:
glven by eqns. (15), (16), (17) undergoes a slight change iIn the sense that the:

condition f(§)=1 at §=1 is ruled out. In this case, f(§) may be assumed to take
the form |

FE =L, (E)+ RE,(E)+ R A (E) +ovveneres (18)
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Substituting this value of f(£) in eqn. (15), we get after rearranging the terms,

F "+ LA E -2 £, (Ofy (O] R
+ [ £, (©) =2 £, OF"®) —2£," (&) [L@OI R ++ee=0  (19)

- Hence setting coefficients of various powers of R separately equal to zero, we

-obtaln

[y (€)=0 (20)
1,77 (6 =2 f,(E)fy"” (6) =0 (2D
1776 =2 f(E)f1" (€ =2 f," (€D f1(E)=0 (22)

:and so on.

The boundary conditions associated with egns. (20), (21), (22) are given by

fo(@ =0, f(D=~1, £/ (0)=0, fy(1)=0 (23)
f10)=0, f,(1)=0, f;°(0)=0, f,"(1)=0 (24)
f5(0)=0, fo(L)=0, f,’(0)=0, fy(1)=0" (25)

The eqns. (23), (24), (25) have been obtained by substituting the Valuej of f(&)
-given by (18) in eqgns. (16) and (17) and then equating coefficients of various
ipowers of R on both sides of the resulting equations.

The solution of eqn. (20) satisfying the boundary conditions (23) is given by

fo(©)=—3E"+28 (26)
The solution of eqn. (21) satisfying the boundary conditions (24) is given by
_ 13 2, 18 23 1 a6, 2 p7

And the solution of eqn. (22) satisfying the boundary conditions (25) is given
by | |

| _ 624 2, 23 23 8 g6, 36 7
f®=""pp5ss T st izt

1 9 6 10, 12 .1
o1 75 ¢ T 1995 ¢ (28)

Hence the solution of eqn. (15) satisfying the boundary conditions (16) and (17)
-when the condition f(§)=1 at £=1 has been ruled out is given by

f(E)=—3$2+2€3+<— 13 g2, 18 ____é__é_=6+ 2 f7)R+(— 624 52+ 23 53 .

355 35 35 40495 539
8 6, 36 27, 1 29 6 10, 12 ,ll 3y
105° T 1955°¢ T3 755 T 1095 % )+O(R) (29)

Differentiating both sides of eqn. (29) with respect to & we obtain

35° 35 40425 539 ®
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16 .5, 36 26, 3 p8_ 12,59 1o>d an
R Jr'175‘-’ 73 35 ° 17.)5 R*+0(R") (30

Hence with the aid of eqns. (5), (7), (14), (29), (30), we have
U _ a2, 423 (26 22, 363 2 , 4 T\
1248 2 _ 6 2 ﬁg
+( 40425 $°F 539 3 105 1225 £

10 24 211\ A2 : |
_ 175 0+ 5 € )R +O(R) (31)

and

1 ,. 2, ([ 26 2 542, 65 2
(/L) ( “)—_f (§)=6¢—6¢ +< 5t TEY B EG)R

L (1248 + 69 2. 16 5 36 5_ 3
(40425“ ot * g0

P2 S-)R2+0<R3) S

Porous Disk with Suction.

When the porous disk is subjected to suction, the boundary value problem given
by egns. (15), (16), (17) would be deprived of the condition f(§)=-1 at é=1.
Proceeding in a similar way as in the previous case, we finally obtain

=2 O =664+~ S+ -2 +h345 57)}?

1248 -2 46 3 9
+( 3 539 105 66 1225 21 3

Il

40425
12 10 24 211 p2 3
175 3 1925 > )R TOE (33)

and

1 _ — 20 & 54 _E-Z __6__ 2 g6
/L) ( ) f(§)=—65+6¢ (3 C— 55 5 & TS)
X 1248 & 69 £32 ___-?3__ 8
+( 20495 T 539 ‘55 175 4

12 =9 10\ 2 |-
— gzt 175—5 )R +O0(R’) (31

Numerical Results and Conelusions.

Eqns. (31), (32), (33), (34) give the solutions of the proposed problem in dimen-:
sionless form for the two respective cases in which the porous disk is Subjected to

injection and suction separately. Table I depicts the values of -—2f(§') and
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C r} D ( Iz; ):- —f’(§) against € in both the cases with R=.0l.
Table 1 |
Values of #/V and [1/(#/1)]v/V against &€ with R=.01. .
& u/V(injection) (1/(r/1)]v/V (in jecltion) #/V (suction) “égg égl)(jlf)/ v

. 00 . 0000 . 0000 . 0000 . 0000

. 10 —. 0560 . 9405 . 0559 — . 5394

.20 - . 2082 . 9608 . 2077 —. 9591

. 30 -~ . 4323 1, 2608 . 4316 ~1, 2591

. 40 —. 7045 1. 4406 . 7034 —1.4393

50  —1.0005 1. 5001 ,9993 —1.4998

. 60 ~ 1. 2966 1.4396 1. 2953 —1. 4403
70 —1.5684 1. 2501 1.5675 —1.2608

. 80 —1. 7922 . 9539 1. 7917 —. 9610

90 —1.9446 . . 5391 1. 9439 —. 5408
1.00 — 2. 0000 . 0000 2. 0000 ‘ . 0000

From the above table, we see that the velocity distributions in the two cases
are quite different In their basic structures, a fact easily seen directly from eqns.
(31), (32), (33), (84) also. In the case of injection, the radial velocity 1s nonneg-
ative meaning thereby that liquid flows radialy avﬁray from the axis of symmetry;
and in the case of suction it is nonpositive meaning thereby that liquid flows
radially inwards. It is also displayed that the radial velocity in the two cases
differs in magnitude too. Likewise it is displayed that the axial velocity in the
two cases differs in magnitude as well as in direction. It may be pointed out
that the reversal of the direction of the velocities in the two cases is a natural
consequence of the fact that in one case the porous disk is subjected to injection
and 1n the other case it is subjected to equal suction; however variations In
magnitude of the velocities in the two cases fail to admit such simple explantions

Ibased on physical intuition. Finally it may be obseved that the numerically greatest
value of the radial velocity in both the cases is attained at £=5, which is mid-
way from the two disks. |
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