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A STUDY ON THE MINIMIZATION OF THE TOTAL
ABSOLUTE CURVATURE OF THE IMMERSED
SUBMANIFOLDS

By YonG TAE SHIN

A) For a given immersion f : M—E**N of smooth n-manifold M into Fu-
clidean space E**N of dim. »+N, NZ>1, we consider the frame bundle z’:
F(n, N)—E**N with the bundle space F(n, N) of all orthonormal frames zee,
-e,,x at each z=E**¥, and we may consider the adapted frame bundle z :
B—M over M. Each fibre over x consists of all the adapted frames f(z)e--
e.e,11--€nry Where ¢; are all tangent 1<4i<s, and e, are normal n+1<r
<n+N at f(z). :

The following is an easy result.

THEOREM 1. = : B—M is a subbundle of the pull-back of «' : F(n, N)—E**N
by the immersion f.

This theorem may serve for introducing the Cartan’s structure equations of
F(n, N) into B in the canonical 1-forms w4 as follows:

(1) dz=3lwaea, deas~2wapen, wap+opa=0

(2) dwa=Xwp/\wpa, dwsp=2Ywac/\ocs
where the indices A, B, and C are range over from 1 to z+N. When we em-
ploy the restricted indices as

1<47, 7, 2<n and n+1<r,s, t<a-+N,
then we have w,=0 and w; are independent, and hence we have from (2)

(3) Za)i/\a)l'r=03
and the expression w;=2_4,;30p of w; with the coefficient A,;p reduces to
4) 0ir=2.4,;0;, Ari=Aj

Consider the projection ¢, : B—B, of B onto the unit normal bundle space
over M with each of its fibre over z consisting of e,;nx at f(z), and we de-
fine the map »: B,—S**¥~1 of the unit normal bundle space B, onto (#-+N
—1)-sphere with the center at the origin of E**¥, We see that the map v is
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related with Theorem 1 by the following diagam:

. Ny 2B, N
\ N - R
' N M f S pen
L4 — 3 SniN-1

where the bundle f*z’ is the pill-back of z” by f, = is the subbundle of f*z’
.and =, is the bundle with the structure group O(N—1)==SV"! factored by the
projection ¢, 4 A
B) The Lipschitz-Killing curvature G(a:, enin)=(— 1)"det(An+th) on B, is
defined through the equation
(5 v¥do=G(z, enyn)dp/\doN-1
where v*do is the differential form on B; induced from the volume element do
of $S#*¥N-1 by » and du and doy_, are
® dp=1/\"*N\On, a0d dON-1=0ni N, w+1/\"*"/\Ont N n+N-1-
The Lipschitz-Killing curvature has the following important properties:
THEOREM 2. G(z,¢..n) is the determinant of the second fundemental form
dv(x, enrn) -df (z), and hence a point (x,e,.n) in B, is a critical point of
v is eguivalent to the fact that G(z, e, n)=0.
The proof can be obtained by the derivation of the dlfferentmble map » de-
fined by v (z, en+N)—-en+NES”+N L,
The tstal absolute curvature r(M f E"*N) of an immersion f: M—~+E"+N is
defined first in [1] by

vy 1__
@ T (M, f, B) —mepIG(x, nsn) |do-1dps

if exists, where C,.x-; is the volume of SatN-1,
‘) The minimization of ¢(M,f, B**N) for a fixed oriented compact 7-ma-
nifold M was originated by the following results of the oomparatlvely small
cvalue of (M, f, E**NY in [1]. -

THEOREM 3. (a) (M, f,E’”'N)>2 For any immersion f.
(b r(M £ E’”'N)<3 implies that M is homeomorphzc o S".
(© (M, f, E**NY=2 if and only if f(M) is a convex hypersurface in some
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Er*, a linear subvariety of E"*N.

The proofs of the theorem depend mainly on the Sard’s theorem applied to
the differentiable map » which has the properties of Theorem 2 about the criti-
cal points, and on the Reeb’s theorem which asserts that if a compact differen-
tiable manifold M has a real-valued differentiable function on it with only two
non-degenerate points, then M is homeomorphic to a sphere.

The above theorem feduc_ed to the case of 't‘he immersed submanifold in ES
is found in [4]. The total absolute Gauss~curvature of an abstract compact Rie- -
mannian surface M can be defined as "
® =(M) _j IKI K>0 ;7{: o T K<o‘_21§r—fi# >
if we notice that

c(M)=c (M, , E3)=?1;folKldad#=74—lz—fM!KIZdﬂ-

With respect to the Euler-Poincare characteristic 1 (M) of M, the Gauss-Bon-
net theorem says:

©) x(M)==—2-17—;J.MKdﬂ ,
From (8) and (9) we obtain
— 7 (M) <y (M)<c (M),
or
(10) t(M)=c(M, f, B¥)={x(M)]

for an abstract compact surface M, not necessarily orientable, with Riemanniar
metric.
We notice that (10) is the particular case of the manifold M to be a to-
pological space homeomorphic with a sphere in comparing (a) of Theorem 3.
For an immersion f : M—E? of a compact 2-manifold not necessarily orien-
table, the following is proved in [4]:

THEOREM 4. (M, f, E®) J IK‘ ==l du>4—y(M) for any f.

An immersion f: M—E? is deﬁned as’ convez immersion if the equality holds
in the above theorem. Thus for the case of y(M)=2, the convex ﬁnmersio:;
is the case (c) of Theorem 3.

For a torus T (3x{ T) =='0), the convex immersion f : T—E? with
(11 o(T,f, B)=4—x(T)=4

(N
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necessarily implies that the boundary of F(V)=£(T) (10%(f(T)), the inter-
section of the image f(7T') and the convex envelope 2 (f(T)) of /(T) in E3,
consists of two plane convex curves, and the Gauss-curvature K is nonnegative
for z=V T and nonpositive for 7—V.

—— - " i et ]

(V)

the boundary of f(V)

By these observation we conclude:

THEOREM 5. The minimization of (M,f, E®) for a abstract compact mani-
Jold M is mecessarily obtained when the convex emvelope dFH(F(M)) of f(M)
contains all part of M for which K0 and non of the part for which K<{.

For a given n-manifold M, the total absolute curvature = (M, f, E**N) of an
immersion f is a function of variables f and N. However for a compaét n-
manifold M, we have in [2] the following:

(12) (M, f, EB¥*N)=z(M,f’, E**¥'), N'>N,
where the tmmersion f' : M—E**¥' is defined by i '
Fl@=(filz), =, farn(z), 0,0,-,0), z=M
when f : M—E*Y is defined by
f@)=(fi(2), . fasn (z)), zEM.
Therefore we may consider (M, f )=v(M.f, E**¥) is a function of one varia-
ble only. In order to minimize (M, f, E**Y), we are now in the position to
investigate the greatest lower bound of (M, f) in variable f.

D) Let 2* be an unit vector in Euclidean vector space E**¥, and z, its
dual, the linear function z: E**N—R such that z2(y)=y-£* for any y=E*V.
We often identify = and z*, and write 2 for z*. Thus we get the composition
zof : M—R which is a continuous function on M. We write zf for both zof
and z*-f,

When an immersion f : M—E**Y is given, a point z in S**N-! js called a
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critical point of £ if v : B,—8**N-! has rank <2+N—1 at an inverse image
of z. M being compact, the set W of critical points of f is a closed subset of
Sn+N —1.

Let ¢ : M—R be a smooth function, A critical point 2&M of ¢ is called
non-degenerate of index k if x has a local coordinate functions ¢y, -+, @, : U—R
such that in U

9=0(2) —pr® =+ — QP+ P’ + o+,
and ¢ is called non-degencrate function if it has only the non-degenerate cri-
tical points.

We may ramify the smooth map f : M—E**N to the above notion. f shall
be called non-degenerate if for almost all = in S**¥-1 the map zf is non-dege-

nerate (i.e. for all z contained in the subset of the positive Lebesgue measure
in SN-1),

THEOREM 6. If f : M—E**N-! {5 an immersion, then it is non-degenerate
and moreover for every non-critical point z of f, the map zf has at least two
points of M with index 0 at one and with index n at another.

The proof is due to the Sard’s theorem applied to the map v : B,—»8*+N-1
for the first part and to the fact that every point of S**N-! is covered at least
twice by v : B,—8%*N-1 because of the compactness of M.

In the set of smooth-functions ¢ : M—R on a smooth z-manifold, we intro-
duce the following notations:

& (M)=the set of non-degenerate functions on M.
(M, p)=the number of critical points of index % of p=®(M)

u(M, o) =§yk(M, ¢), the number of critical points of p=@ (M)

7(M)=min {1,(M, 9) ; p=® (M)}
7(M)=min{u(M, ¢) ; p=& (M)}

Let 8;(M) be the maximal rank of the 2-th homology group of M for all
coefficient rings and the set ®(M). Then the Morse inequalities say:
(13) 1:(M)>B:(M)

(1) T =3 (M)Y=56,(M)=p(M)

We see through Theorem 6 that to each point = contained in the set G, the
complement of the set of the critical points of f in S»*¥-1 there assignes a
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positive integer 4(M, 2f), the number of fibres in B, which contains only one
preimage of z. If we apply the Sard’s theorem to the map », the equation (5)
and the above notations derive:

M= LS, En+N)=_C' +1N~1 J.Bvlv*dal= C +1N—1 fu

1 a1
”T;IELGG“(M’ =f) ldal'mjzcsﬂmlﬂ(ﬂ/f, =f) |do|

Thus we have as in [3]

THEOREM 7. t(M,f)>r (M), if M is compact.

This theorem is sharper than the following theorem obtained in [2]:
THEOREM 8. ©(M,f)>B(M), if we refer to the Morse inequality (14).

E) The greatest lower bound of (M, f) in the variable f is obtained in [3]
by

THEOREM 9. Inf{c(M,f); for any immersion f}=7(M), for any fized com-
pact n~manifold M.

Since we have Theorem. 8, the proof is to be accomplished if we can esta-
blish a sequence of immersions the total absolute curvatures of which converge
to (M) as argued in [3].

For any immersion f : M—E**Y  and for any positive integers A, we define
kit M—EsN x Fl==FrtN*l by h=fx lp where p=0(M) with u(M, )=
7(M). Since rank(h;)>rank(f), ki is an immersion. Thus the established the-
orem becomes

THECREM 10. }un (M, hp) =7 (M).
We shall prove this theorem through the following lemma.

LEMMA 1. For each integer 2>0, there exists a closed neighborhood N, of
the equagor L of S**Y, considered z0=(0,1) as the north pole, such that =<
N1 iff u(M, zhp)) =<7 (M).

Proof. Consider the immersion hy==f X Ap : M—E**N*1, ¥ we choose 2,=/(0,
<+, 0, 1)=(0, 1) =S¥ E**¥ x FL, zph;=Ap, and hence z belongs to the open
subset G of S"*¥ and zyh; belongs to ®(M), having the number of non-dege-
nerate critical points eaqual to 7(M) for each A>0. Since zh; is continuous li-
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near in the variable z of E**N*1, so are d(zh;) and the Hessian of zk;, par-
ticularly at z. Choosing 1=1, there exists £2>0 such that
D={z=(w, &) |0 E*Y, EEE’} e
is an open neighborhood of 2p=(0,1) in E**¥ x E! such fhat [z—zo| < 4/E
implies p(M, zh))=r(M). I we denote
Dy={z]z=(®,§)=D, &=1}

then for any =D, z satisfies that |z—=2y|<+/¢ or equivalently w?<z. That
1s, zh;=wf+¢ belongs to ®(M) Wlth ,u(M zhl) (M) if o?<e.

If we put

¢d=Azhy=laf+2p for any positive mteger A, then ¢E¢(M) W1th ;z.(M )
=7(M) i Pu?<%.

On the other hand, for any z&D 1 8§7¥,

zhy=af-+ A,
Since £ can be assumed pon-zero we have equivalently

z 2ﬁ1—*'——f +20.

Hence zk; belongs to Q(M) w1th p(M, zh)=y (M) if ( céu ‘>2<'1287 or equiva-
lently 1/ V15 c2<8%
We denote Dy the set of points (w, &) in E**N X E! such that

—1/ VIFeBEST/ VI F el
If 2Dy NS**N, then r(M)#u(M, zh;)<oco, since z=D;’ NS**¥ if and oniy
)

i [?[ Z>e,

We have now only to put N;=Dy NS"**¥ to get the required neighborhood.

Proof of Theorem 10. For an arbitrary positive integer 4, it is clear that Ny
cN; by the construction. Hence {N;: A<Z*} is a nested sequence of bound-
ed closed subsets each containg the equator L of S**N. It is clear that it
converges to the equator L of S**¥, i.e. lji_{n;Nx=L.

Hence

EET(M’ k) =};11£*—Cﬁ‘j‘sn+Nﬂ(M, zh) |do N |

=]3m{

pRn

)
Cn+N 8 "y
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=Tﬁ“ﬁww _7(M)|do.sn|+0

=]\ D i | = (O0).
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