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A STUDY ON THE MINIMIZATION OF THE TOTAL
ABSOLUTE CURVATURE OF THE IMMERSED

SUBMANIFOLDS

By YONG T AE SHIN

A) For a given immersion f: M~E"t-N of smooth n-manifold M into Eu­

clidean space F)'t-N of dim. n+N, N>I, we consider the frame bundle 71:':

F(n, N)~F)'+N with the bundle space F(n, N) of all orthonormaI frames xele?:

···en+N at each xEE,,+N, and we may consider the adapted frame bundle 71::­

B~M over M. Each fibre over x consists of all the adapted frames f(x)el'"

enen+I"'en+N where ei are all tangent I<i<n, and er are normal n+I<r

<n+N at f(x).

The following is an easy result.

THEOREM 1. 71: : B~M is a subbundle of the pull-back of 71:' : F(n, N)~Ent-N

by the immersion f.

This theorem may serve for introducing the Cartan's structure equations of

F(n, N) into B in the canonical I-fonns WA as follows:

(l) dx=ThAeA, deA='L,wABCB, WAB+WBA=O

(2) d£tlA=ThB!\WBA, dWAB=ThAC!\WCB

where the indices A, B, and C are range over from I to n+N. When we em­

ploy the restricted indices as

Is.i, j, k<n and n+Is.r, s, t<n+N,

then we have wr=O and Wi are independent, and hence we have from (2)

(3) Thi!\Wir=O,

and the expression Wir= :EAriBlOB of Wir with the coefficient AriB reduces to

(4)

Consider the projection ep" : B~B" of B onto the unit normal bundle space

over M with each of its fibre over x consisting of en+N at fex), and we de­

fine the map )): B,,~Sll+N-l of the unit normal bundle space B" onto (n+N

-I)-sphere with the center at the origin of F)'t-N. We see that the map )) is
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related with Theorem 1 by the following diagam:

where the bundle f*1C' is the pUll-back of 1C' by f,1C is the. subbundle of f*1C'

.and 1Cv is the bundle with the structure group O(N-1)=SN-l faetored by the

projection ep".
B) The Lipschitz-Killing curvature G(x, en+N) = (-1) ndet(A,,+Nij) on R" is

defined through the equation

(5) v*du=G(x, e,,+N)dJ.tl\duN-l

where v*du is the differential form on B'" induced from the :volume element dq

of Sn+N-l by v, and dJ.t and dqN-l are

(6) dJ.t=ahl\···I\(J)", and dUN-l~(J)n+N'n+1I\···I\(J),,+N, n+N-l.

The Lipsehitz-Killing curvature has the following important <properties:

THEOREM 2. G(x, e,,+N) is the determinant of the second fundamental form

dv(x,e,,+N) ·df(x) , and.hence a point (x,e,,+N) in B" is a critical point of

v is equivalent to the fact that G(x,en+N)=O.

The proof can be obtained by the derivation. of the differ~tiable map v de­

iined by v (x, en+N) =en+NEsn+N~l.

The tOtal absolute curvature ,(M,f, En+N) of an immersion f: M-+En+N is

defined first in [IJ by

(7) . ,(M,j, En+N) Cl, fR IG(x, Cn+N) \dUN-1dJ.l,
n+N-l J. "

if exists, where Cn+N-l is the volume of Sn+N-l.

'C) The mfuimization of ,CM,j, E"+N) for a: fixed oriented·· compact n-ma­

nifold M was originated by the following results of the compai-atively small

: -value of r:(M,f, E"+N} in Cl]. .

. THEOREM 3. (a) ,(M.!, E"+N)>2 for any immersion f.

(b) r:(M,j; E"+N) <3 imjilies ihat M is homeomorpkic to S".

(e),(M,j, En+N) =2 if and only if f(M) is a cOnvex hypersurface in some
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En+1, a linear subvariflty of En+N.

The proofs of the theorem depend mainly on the ~rd's theorem. applied to

the differentiable map J) which has the properties of Theorem 2 about the criti-
. -' ..' '...

cal points, and on the Reeb's theorem ~hich asserts that if a com~ differe~-

tiable manifold M has a real-valued differentiable function on it with only two

non-degenerate points, ..then M is homeomorphic to a sphere.

The above theorem reduced to the case of the immersed submanifold in Ea­
is found in [4J. The total ahsolute Gauss-curva~ of an abstract compact Rie- .

mannian surface M can be defined as

(8) 1:(M)=S JRd,u=J Ld,u-S. Ld,u,
M 2/t" K>o 210 K<o 210

if we notice that

.. (M)= .. (M,f,E3)= Cl S IKldud,u=-41 S IKI2d,u.
2 Bv X M

With respect to the Euler-Poincare characteristic X(M) of M, the Gauss-Bon­

net theorem says:

(9) X(M)= 2~ fMKd,u

From (8) and (9) we obtain

--..(M)~X(M)~ ..(M),
or

(10) ..(M} =7: (M,f, E3)~lx(M)I
for an abstract compact surface M, not necessarily orientable, with Riemapn~

metric.

We notice that (10) is the particular case of the ~!fold. M 19 be a to­

pological space homeomorp~ic with. a sphere in comparing (a) of Theorem 3­

For an immersion.f: M_E3 of a compact 2-manifold not necessarily orien­

table, the followitlg is vroved in [4J:

THEOREM 4. 7:(M,f,W)=SM ';' d,u?4--x(M) for any f.

An immersion f: M_E3 is defined as convex immersion if the eqW!lity ho1ds:...

in the above theorem. Thus for the case of X(M)=2, the convex immersion.- . . '

is the case (c) of Theorem 3.

For a torus T (X(T)=O), the convex immersion f: T_E3 with

(11) ,(T,f, E3)=4-X(T)=4
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necessarily implies that the bow:idary of f(V)=f(T) na!Je(f(T», the inter­

section of the image f( T) and the convex envelope a!Je(r( T» of f( T) in E3,

consists of two plane convex curves, and the Gauss-curvature K is nonnegative

for xEVcT and nonpositive for T-V.

the boundary of f(V)

J~-+--f(V)

./--------------- --------- -' -"7'--.,.,,
/,,,

/
/,,

,;
#'

"
//,

By these observation we conclude:

THEOREM 5. The minimization of 1:(M,f, E3) for a abstract compact mani­

fold M is necessarily obtained when the convex envewpe a!Je(f(M» of f(M)

contains all part of M for which K>o and non of the part for which K<O.

For a given n-manifold M, the total absolute curvature 1:(M,f, p;n+N) of an

immersion f is a function of variables 1 and N. However for a compact n­

manifold M, we have in [2J the following:

(12) 1:(M,f, E!'+N)=1:(M,{', FJII-N') , N'>N,
where the immersion f' : M-EJt+N' is defined by

I'(x) = (f1(X), ..., fn+N(x), 0,0, ···,0), xEM

when f: M-p;n+N is defined by

f(x) = ([1 (x), ···,fn+N(X», xEM.

Therefore we may consider 1:(M, f)=1:(M,f, EJt+N) is a function of one varia­

ble only. In order to minimize t:(M,f, En+N) , we are now in the position to

investigate the greatest lower bound of t:(M, I) in variable f.
D) Let %* be an unit vector in Euclidean vector space En+N, and %, its

dual, the linear f~etion z: E"+N->R such that z(y)=Y'z* for any yEEn+N.

We often identify z and z*, and write % for z*. Thus we get the composition

zol: M ->R which is a continuous function on M. We write if for both %01
and Z*·f.

When an immersion I: M_EJt+N is given, a point % in Sn+N-1 is called a
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critical point of f if ].I: Bv----.Sn+N-l has rank <n+N-l at an inverse image

of z. M being compact, the set W of critical points of f is a closed subset of
Sn+N-l.

Let rp: M----.R be a smooth function. A critical point xEM of ({J is called

non-degenerate of index k if x has a local coordinate functions ({JIt ..., ({In : U----.R

such that in U

({J=({J(X)-({J12_"'-({Jl+({Jk+12+'''+({Jn2

and ({J is called non-degenerate function if it has only the non-degenerate cri­

tical points.

We may ramify the smooth map f: M .....£rt+N to the above notion. f shall

be called non-degenerate if for almost all z in Sn+N-l the map zf is non-dege·

nerate (i. e. for all z contained in the subset of the positive Lebesgue measure
in Sn+N-I).

THEOREM 6. If f : M.....£rt+N - 1 is an immersion, then it is non-degenerate

and moreover for every non-critical point z of f, the map zf has at least two

points of M with index 0 at one and with index n at another.

The proof is due to the Sard's theorem applied -to the map ].I: Bv----.Sn+N-I

for the first part and to the fact that every point of Sn+N-l is covered at least

twice by ].I : Bv----.Sn+N-l because of the compactness of M.

In the set of smooth·functions ({J: M .....R on a smooth n-manifold, we intro·
duce the following notations:

tf>(M) =the set of non-degenerate functions on M.

ttk(M, ({J)=the number of critical points of index k of ((JEtf>(M)

tt(M,({J)=tf.lk(M,({J), the number of critical points of ({JEtf>(M).-0
7k(M)=min{f.lk(M, ((J) ; ({JEtf>(M)}

r(M)=min{f.l(M,({J) ; ({JEq)(M)}

Let /3k(1I1) be the maximal rank of the k-th homology group of M for all

coefficient rings and the set tf>(M). Then the Morse inequalities say:

(13)

(14)

rk(M»/3k(M)

r(M)?:.t7k(M»t/3k(M)=/3(M)
.~O .~O

We see through Theorem 6 that to each point z contained in the set G, the

complement of the set of the critical points of f in Sn+N-\ there assignes a
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positive integer p(M, zj), the number of :fihresin Bv whjch contains only one

pre4'Dage of z. If we apply the Sard's theorem to the map v, the equation (5)

and the above notations derive:

'C(M,f)=r(M,j,E"t-N)=~_l_f Iv*dlTl 1 f I Iv*dl1l
Cn+N-1 B" Cn+N-l v-'- cG)

Cn:N-l t"Gf.l(M,zf)\dlTl 'Cn+~-l t"sn+N-1f.l(M,;if)\dlT!

Thus we have as in [3J

THEOREM 7. r(M,f»r(M), if M is campaet.

This thef?rem is sharper than the following theor~m obtain~ in [2J:

THEOREM 8. 7:(M,f»fi(M), if we refer to the Morse inequality (14).

E) The greatest lower bound of 7:(M,f) in the variable f is obtained in [3J

by

THEOREM 9. Inf{7:(M,f); for any immersion f} =r(M), for any fixed com­

pact n-manifold M.

Since we have Theor~m.8, .the proof is to I;Je accQmp).ish~ .if we can esta­

blish a sequ~ of immersions the total abSQIl,1te cw:vatures of which converge

to reM) as argued in [3J.
Fo.. any immersion f: M-+En+N, and for any positive integers.il, we define

hl:M-+E"+NxEl=E"+N+l by hl=fx).rp where rpEf1)(M) with f./(M,rp)=

reM). Since rank(hl)~rank(f), hl is an.~~. Th,us ~e.established the­

orem becomes

THEOREM 10. lim 7:(M,hl )=r(M).
l-eo

We shall prove this theorem L~rough the following lemma.

LEMMA 1. For each integer ).>0, there exis.ts a closed neighborhood N l of

the equator L of Sn+N, considered Zo= (0, 1) as the north pol{J, s~ch that zE

Nl iff p.(M, zhl)=I=r(M).

Proof. Consider the immersion hl=fxAq;: M-+E"+N+l. If we choose zo=(O,

"',O,I)=(O,l)ESn+Nc En+N x El,zohl=)'rp, and hence z belongs to the open

subset G of Snt-N and ¥l belongs to (J}(M), having the number of non-dege­

nerate critical points eaqual to reM) for each A>O. Since Zhl is continuous li-
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near in the variable z of p+N+1, so are d(zkl ) and the Hessian of zkl, par­

ticularly at Zo. Choosing ).=1, there exists e>O such "that

D= {z= (Ctl,~) ImEP+N, ';l:=EI}

is an open neighborhood of zo=(O, I) in P+NxEI such"fliat Iz-zcl<ve­

implies p,(M, zkl)=r(M). If we denote

Dl={zl.lt=(d),~)8D, ~=I}

then for any zED!> z sa~~ (:Qat Iz-Z.o I<is or equivalently m2<t. That
is, zk1=m!+q; belongs to fl)(M) with p,{M..zki) =r(M) if m2<e.

If we put

t/J=Azkl=).m!+Aq; for any positive integer)., then i/JEfl)(M) with p,(M, t/J,

=r(M) if ).2m2<A2e•

On the other hand, for any zED nSn+N,

zkl=m!+).';q;.

Since ~ can be assumed. non-zero, vr:e have e<}uivalently

tzkl= ~f+).q;.

Hence zkl belongs to fl)(M) with p,(M, zkl)=r(M) if ( ~ y<).2e or equiva­

lently 1/ VI+e).2<e2
•

We denote D/ the set of points (m,';) in En+N x El such that

-1/Vl+~2<e<1/vl+~2

If zED/ nSn+N, then r(M)=I=p,(M, zkl )<00, since zED/ nSn+N if and only-

if I e1
2>d2

•

We have now only to put Nl=D/nSn+N to get the required neighborhood.

Proof o! Theorem 10. For an arbitrary positive integer 1, it is clear that Nm­

eNl by the construction. Hence {Nl: ).EZ+} is a nested sequence of bound­

ed closed subsets each containg the equator L of Sn+N. It is clear that it

converges to the equator L of Sn+N, i.e. IimNl=L.
1-00

Hence

limr(M,kl)=Iim-
C

I J.+NP,(M,zk) Idun+NI
A--oQO l--oQO n+N S

=Iim{-Cl J.+N r(M)ldun+NI+-c
I J p,(M,zk;)!dUn+NI}

1-00 .+N S -NJ. n+N Nl
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IC
1

J'<OOHl .reM) IdO'n+NI +0
I n+N' ~ -L

cl Cl +Nr(M) Id/T~+NI=r(M).
n+N Jso
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