A STUDY ON THE MINIMIZATION OF THE TOTAL ABSOLUTE CURVATURE OF THE IMMERSED SUBMANIFOLDS

BY YONG TAE SHIN

A) For a given immersion $f: M \rightarrow E^{n+N}$ of smooth n-manifold M into Euclidean space E^{n+N} of dim. n+N, $N \ge 1$, we consider the frame bundle $\pi': F(n,N) \rightarrow E^{n+N}$ with the bundle space F(n,N) of all orthonormal frames $xe_1e_2 \cdots e_{n+N}$ at each $x \in E^{n+N}$, and we may consider the adapted frame bundle $\pi: B \rightarrow M$ over M. Each fibre over x consists of all the adapted frames $f(x)e_1 \cdots e_ne_{n+1} \cdots e_{n+N}$ where e_i are all tangent $1 \le i \le n$, and e_r are normal $n+1 \le r \le n+N$ at f(x).

The following is an easy result.

THEOREM 1. $\pi: B \rightarrow M$ is a subbundle of the pull-back of $\pi': F(n, N) \rightarrow E^{n+N}$ by the immersion f.

This theorem may serve for introducing the Cartan's structure equations of F(n, N) into B in the canonical 1-forms ω_A as follows:

- (1) $dx = \sum \omega_A e_A$, $de_A = \sum \omega_A g e_B$, $\omega_{AB} + \omega_{BA} = 0$
- (2) $d\omega_A = \sum \omega_B \wedge \omega_{BA}$, $d\omega_{AB} = \sum \omega_{AC} \wedge \omega_{CB}$

where the indices A, B, and C are range over from 1 to n+N. When we employ the restricted indices as

$$1 \le i, j, k \le n$$
 and $n+1 \le r, s, t \le n+N$,

then we have $\omega_r=0$ and ω_i are independent, and hence we have from (2)

$$(3) \qquad \qquad \sum \omega_i \wedge \omega_{ir} = 0,$$

and the expression $\omega_{ir} = \sum A_{riB}\omega_B$ of ω_{ir} with the coefficient A_{riB} reduces to

(4)
$$\omega_{ir} = \sum A_{rij}\omega_{j}, \quad A_{rij} = A_{rji}.$$

Consider the projection $\psi_{\nu}: B \to B_{\nu}$ of B onto the unit normal bundle space over M with each of its fibre over x consisting of e_{n+N} at f(x), and we define the map $\nu: B_{\nu} \to S^{n+N-1}$ of the unit normal bundle space B_{ν} onto (n+N-1)-sphere with the center at the origin of E^{n+N} . We see that the map ν is

related with Theorem 1 by the following diagam:

where the bundle $f^*\pi'$ is the pull-back of π' by f, π is the subbundle of $f^*\pi'$ and π_{ν} is the bundle with the structure group $O(N-1)\cong S^{N-1}$ factored by the projection ϕ_{ν} .

- B) The Lipschitz-Killing curvature $G(x, e_{n+N}) = (-1)^n det(A_{n+Nij})$ on B_{ν} is defined through the equation
- (5) $\nu^* d\sigma = G(x, e_{n+N}) d\mu \wedge d\sigma_{N-1}$

where $\nu^* d\sigma$ is the differential form on B_{ν} induced from the volume element $d\sigma$ of S^{n+N-1} by ν , and $d\mu$ and $d\sigma_{N-1}$ are

(6)
$$d\mu = \omega_1 \wedge \cdots \wedge \omega_n$$
, and $d\sigma_{N-1} = \omega_{n+N, n+1} \wedge \cdots \wedge \omega_{n+N, n+N-1}$.
The Lipschitz-Killing curvature has the following important properties:

THEOREM 2. $G(x, e_{n+N})$ is the determinant of the second fundamental form $d\nu(x, e_{n+N}) \cdot df(x)$, and hence a point (x, e_{n+N}) in B_{ν} is a critical point of ν is equivalent to the fact that $G(x, e_{n+N}) = 0$.

The proof can be obtained by the derivation of the differentiable map ν defined by $\nu(x,e_{n+N})=e_{n+N}{\in}S^{n+N-1}$.

The total absolute curvature $\tau(M, f, E^{n+N})$ of an immersion $f: M \rightarrow E^{n+N}$ is defined first in [1] by

(7)
$$\tau(M, f, E^{n+N}) = \frac{1}{C_{n+N-1}} \int_{B_{\nu}} |G(x, e_{n+N})| d\sigma_{N-1} d\mu,$$

if exists, where C_{n+N-1} is the volume of S^{n+N-1} .

C) The minimization of $\tau(M, f, E^{n+N})$ for a fixed oriented compact *n*-manifold M was originated by the following results of the comparatively small value of $\tau(M, f, E^{n+N})$ in [1].

THEOREM 3. (a) $\tau(M, f, E^{n+N}) \ge 2$ for any immersion f.

- (b) $\tau(M, f, E^{n+N}) < 3$ implies that M is homeomorphic to S^n .
- (c) $\tau(M, f, E^{n+N}) = 2$ if and only if f(M) is a convex hypersurface in some

The proofs of the theorem depend mainly on the Sard's theorem applied to the differentiable map ν which has the properties of Theorem 2 about the critical points, and on the Reeb's theorem which asserts that if a compact differentiable manifold M has a real-valued differentiable function on it with only two non-degenerate points, then M is homeomorphic to a sphere.

The above theorem reduced to the case of the immersed submanifold in E^3 is found in [4]. The total absolute Gauss-curvature of an abstract compact Riemannian surface M can be defined as

(8)
$$\tau(M) = \int_{M} \frac{|K|}{2\pi} d\mu = \int_{K>0} \frac{K}{2\pi} d\mu - \int_{K<0} \frac{K}{2\pi} d\mu,$$

if we notice that

$$\tau(M) = \tau(M, f, E^3) = \frac{1}{C_2} \int_{B^{\nu}} |K| d\sigma d\mu = \frac{1}{4\pi} \int_{M} |K| 2d\mu.$$

With respect to the Euler-Poincare characteristic $\chi(M)$ of M, the Gauss-Bonnet theorem says:

(9)
$$\chi(M) = \frac{1}{2\pi} \int_{M} K d\mu$$

From (8) and (9) we obtain

$$-\tau(M) \stackrel{\cdot}{\leq} \chi(M) \leq \tau(M)$$

or

(10)
$$\tau(M) = \tau(M, f, E^3) \ge |\chi(M)|$$

for an abstract compact surface M, not necessarily orientable, with Riemannian metric.

We notice that (10) is the particular case of the manifold M to be a topological space homeomorphic with a sphere in comparing (a) of Theorem 3.

For an immersion $f: M \rightarrow E^3$ of a compact 2-manifold not necessarily orientable, the following is proved in $\lceil 4 \rceil$:

Theorem 4.
$$\tau(M, f, E^3) = \int_M \frac{|K|}{2\pi} d\mu \ge 4 - \chi(M)$$
 for any f .

An immersion $f: M \rightarrow E^3$ is defined as *convex* immersion if the equality holds in the above theorem. Thus for the case of $\chi(M)=2$, the convex immersion is the case (c) of Theorem 3.

For a torus $T(\chi(T)=0)$, the convex immersion $f: T \rightarrow E^3$ with

(11)
$$\tau(T, f, E^3) = 4 - \chi(T) = 4$$

necessarily implies that the boundary of $f(V)=f(T)\cap\partial\mathcal{H}(f(T))$, the intersection of the image f(T) and the convex envelope $\partial\mathcal{H}(f(T))$ of f(T) in E^3 , consists of two plane convex curves, and the Gauss-curvature K is nonnegative for $x \in V \subset T$ and nonpositive for T-V.

By these observation we conclude:

THEOREM 5. The minimization of $\tau(M, f, E^3)$ for a abstract compact manifold M is necessarily obtained when the convex envelope $\partial \mathcal{H}(f(M))$ of f(M) contains all part of M for which K>0 and non of the part for which K<0.

For a given *n*-manifold M, the total absolute curvature $\tau(M, f, E^{n+N})$ of an immersion f is a function of variables f and N. However for a compact n-manifold M, we have in [2] the following:

(12)
$$\tau(M,f,E^{n+N}) = \tau(M,f',E^{n+N'}), N' > N,$$

where the immersion $f': M \rightarrow E^{n+N'}$ is defined by

$$f'(x) = (f_1(x), \dots, f_{n+N}(x), 0, 0, \dots, 0), x \in M$$

when $f: M \rightarrow E^{n+N}$ is defined by

$$f(x) = (f_1(x), \dots, f_{n+N}(x)), x \in M.$$

Therefore we may consider $\tau(M, f) = \tau(M, f, E^{n+N})$ is a function of one variable only. In order to minimize $\tau(M, f, E^{n+N})$, we are now in the position to investigate the greatest lower bound of $\tau(M, f)$ in variable f.

D) Let z^* be an unit vector in Euclidean vector space E^{n+N} , and z, its dual, the linear function $z: E^{n+N} \to \mathbb{R}$ such that $z(y) = y \cdot z^*$ for any $y \in E^{n+N}$. We often identify z and z^* , and write z for z^* . Thus we get the composition $z \circ f: M \to \mathbb{R}$ which is a continuous function on M. We write zf for both $z \circ f$ and $z^* \cdot f$.

When an immersion $f: M \rightarrow E^{n+N}$ is given, a point z in S^{n+N-1} is called a

On the minimization of the total absolute curvature of the immersed submanifolds 77 critical point of f if $\nu: B_{\nu} \to S^{n+N-1}$ has rank < n+N-1 at an inverse image of z. M being compact, the set W of critical points of f is a closed subset of S^{n+N-1} .

Let $\varphi: M \to \mathbb{R}$ be a smooth function. A critical point $x \in M$ of φ is called non-degenerate of index k if x has a local coordinate functions $\varphi_1, \dots, \varphi_n: U \to \mathbb{R}$ such that in U

$$\varphi = \varphi(x) - \varphi_1^2 - \dots - \varphi_k^2 + \varphi_{k+1}^2 + \dots + \varphi_n^2$$

and φ is called *non-degenerate function* if it has only the non-degenerate critical points.

We may ramify the smooth map $f: M \to E^{n+N}$ to the above notion. f shall be called *non-degenerate* if for almost all z in S^{n+N-1} the map zf is non-degenerate (i.e. for all z contained in the subset of the positive Lebesgue measure in S^{n+N-1}).

THEOREM 6. If $f: M \to E^{n+N-1}$ is an immersion, then it is non-degenerate and moreover for every non-critical point z of f, the map zf has at least two points of M with index 0 at one and with index n at another.

The proof is due to the Sard's theorem applied to the map $\nu: B_{\nu} \to S^{n+N-1}$ for the first part and to the fact that every point of S^{n+N-1} is covered at least twice by $\nu: B_{\nu} \to S^{n+N-1}$ because of the compactness of M.

In the set of smooth-functions $\varphi: M \to \mathbb{R}$ on a smooth *n*-manifold, we introduce the following notations:

 $\Phi(M)$ = the set of non-degenerate functions on M.

 $\mu_k(M, \varphi)$ = the number of critical points of index k of $\varphi \in \Phi(M)$

$$\mu(M,\varphi) = \sum_{k=0}^{n} \mu_k(M,\varphi)$$
, the number of critical points of $\varphi \in \Phi(M)$

$$\gamma_{k}(M) = \min\{\mu_{k}(M, \varphi) ; \varphi \in \Phi(M)\}$$

$$\gamma(M) = \min \{ \mu(M, \varphi) ; \varphi \in \Phi(M) \}$$

Let $\beta_k(M)$ be the maximal rank of the k-th homology group of M for all coefficient rings and the set $\Phi(M)$. Then the Morse inequalities say:

(13)
$$\gamma_{b}(M) \geq \beta_{b}(M)$$

(14)
$$\gamma(M) \geq \sum_{k=0}^{n} \gamma_{k}(M) \geq \sum_{k=0}^{n} \beta_{k}(M) = \beta(M)$$

We see through Theorem 6 that to each point z contained in the set G, the complement of the set of the critical points of f in S^{n+N-1} , there assignes a

positive integer $\mu(M, zf)$, the number of fibres in B_{ν} which contains only one preimage of z. If we apply the Sard's theorem to the map ν , the equation (5) and the above notations derive:

$$\tau(M,f) = \tau(M,f,E^{n+N}) = \frac{1}{C_{n+N-1}} \int_{B^{\nu}} |\nu^* d\sigma| = \frac{1}{C_{n+N-1}} \int_{\nu^{-1}(G)} |\nu^* d\sigma|$$
$$= \frac{1}{C_{n+N-1}} \int_{z=G} \mu(M,zf) |d\sigma| = \frac{1}{C_{n+N-1}} \int_{z=S}^{n+N-1} \mu(M,zf) |d\sigma|$$

Thus we have as in [3]

THEOREM 7. $\tau(M,f) \ge \gamma(M)$, if M is compact.

This theorem is sharper than the following theorem obtained in [2]:

THEOREM 8. $\tau(M,f) \ge \beta(M)$, if we refer to the Morse inequality (14).

E) The greatest lower bound of $\tau(M, f)$ in the variable f is obtained in [3] by

THEOREM 9. Inf $\{\tau(M,f); \text{ for any immersion } f\} = \gamma(M), \text{ for any fixed compact } n\text{-manifold } M.$

Since we have Theorem 8, the proof is to be accomplished if we can establish a sequence of immersions the total absolute curvatures of which converge to $\gamma(M)$ as argued in [3].

For any immersion $f: M \to E^{n+N}$, and for any positive integers λ , we define $h_{\lambda}: M \to E^{n+N} \times E^1 \equiv E^{n+N+1}$ by $h_{\lambda} = f \times \lambda \varphi$ where $\varphi \in \Phi(M)$ with $\mu(M, \varphi) = \gamma(M)$. Since $rank(h_{\lambda}) \geqslant rank(f)$, h_{λ} is an immersion. Thus the established theorem becomes

Theorem 10. $\lim_{\lambda \to \infty} \tau(M, h_{\lambda}) = \gamma(M)$.

We shall prove this theorem through the following lemma.

LEMMA 1. For each integer $\lambda > 0$, there exists a closed neighborhood N_{λ} of the equator L of S^{n+N} , considered $z_0 = (0,1)$ as the north pole, such that $z \in N_{\lambda}$ iff $\mu(M, zh_{\lambda}) \neq \gamma(M)$.

Proof. Consider the immersion $h_{\lambda}=f \times \lambda \varphi: M \to E^{n+N+1}$. If we choose $z_0=(0, \dots, 0, 1)\equiv (0, 1) \in S^{n+N} \subset E^{n+N} \times E^1, z_0h_{\lambda}=\lambda \varphi$, and hence z belongs to the open subset G of S^{n+N} and z_0h_{λ} belongs to $\Phi(M)$, having the number of non-degenerate critical points eaqual to $\gamma(M)$ for each $\lambda > 0$. Since zh_{λ} is continuous li-

On the minimization of the total absolute curvature of the immersed submanifolds 79-near in the variable z of E^{n+N+1} , so are $d(zh_{\lambda})$ and the Hessian of zh_{λ} , particularly at z_0 . Choosing $\lambda=1$, there exists $\varepsilon>0$ such that

$$D = \{z = (\omega, \xi) \mid \omega \in E^{n+N}, \xi \in E^1\}$$

is an open neighborhood of $z_0 = (0, 1)$ in $E^{n+N} \times E^1$ such that $|z-z_0| < \sqrt{\varepsilon}$ implies $\mu(M, zh_1) = \gamma(M)$. If we denote

$$D_1 = \{z \mid z = (\tilde{\omega}, \xi) \in D, \xi = 1\}$$

then for any $z \in D_1$, z satisfies that $|z-z_0| < \sqrt{\varepsilon}$ or equivalently $\omega^2 < \varepsilon$. That is, $zh_1 = \omega f + \varphi$ belongs to $\Phi(M)$ with $\mu(M, zh_1) = \gamma(M)$ if $\omega^2 < \varepsilon$.

If we put

 $\psi = \lambda z h_1 = \lambda \omega f + \lambda \varphi$ for any positive integer λ , then $\psi \in \Phi(M)$ with $\mu(M, \psi) = \gamma(M)$ if $\lambda^2 \omega^2 < \lambda^2 \varepsilon$.

On the other hand, for any $z \in D \cap S^{n+N}$,

$$zh_{\lambda}=\omega f+\lambda\xi\varphi$$

Since ξ can be assumed non-zero, we have equivalently

$$\frac{1}{\xi}zh_{\lambda}=\frac{\omega}{\xi}f+\lambda\varphi.$$

Hence zh_{λ} belongs to $\Phi(M)$ with $\mu(M, zh_{\lambda}) = \gamma(M)$ if $\left(\frac{\omega}{\xi}\right)^2 < \lambda^2 \varepsilon$ or equivalently $1/\sqrt{1+\varepsilon\lambda^2} < \xi^2$.

We denote D_{λ}' the set of points (ω, ξ) in $E^{n+N} \times E^1$ such that

$$-1/\sqrt{1+\varepsilon\lambda^2} \le \xi \le 1/\sqrt{1+\varepsilon\lambda^2}$$

If $z \in D_{\lambda}' \cap S^{n+N}$, then $\gamma(M) \neq \mu(M, zh_{\lambda}) < \infty$, since $z \in D_{\lambda}' \cap S^{n+N}$ if and only if $\left| \frac{\omega}{\varepsilon} \right|^2 \ge \varepsilon \lambda^2$.

We have now only to put $N_{\lambda}=D_{\lambda}'\cap S^{n+N}$ to get the required neighborhood.

Proof of Theorem 10. For an arbitrary positive integer λ , it is clear that $N_{\lambda+1}$. $\subset N_{\lambda}$ by the construction. Hence $\{N_{\lambda}:\lambda \subseteq Z^+\}$ is a nested sequence of bounded closed subsets each containing the equator L of S^{n+N} . It is clear that it converges to the equator L of S^{n+N} , i.e. $\lim N_{\lambda}=L$.

Hence

$$\lim_{\lambda \to \infty} \tau(M, h_{\lambda}) = \lim_{\lambda \to \infty} \frac{1}{C_{n+N}} \int_{S^{n+N}} \mu(M, zh_{\lambda}) |d\sigma_{n+N}|$$

$$= \lim_{\lambda \to \infty} \left\{ \frac{1}{C_{n+N}} \int_{S^{n+N} - N\lambda} \tau(M) |d\sigma_{n+N}| + \frac{1}{C_{n+N}} \int_{N\lambda} \mu(M, zh_{\lambda}) |d\sigma_{n+N}| \right\}$$

$$= \frac{1}{|C_{n+N}|} \int_{S^{n+N}-L}^{1} \gamma(M) |d\sigma_{n+N}| + 0$$

$$= \frac{1}{|C_{n+N}|} \int_{S^{n+N}}^{1} \gamma(M) |d\sigma_{n+N}| = \gamma(M).$$

References

- [1] S. S. Chern and R. K. Lashof, On the total curvature of immersed manifolds, Amer. J. of Math. 79(1957), 306-313.
- [2] ____ and ____, On the total curvature of immersed manifolds II, Michigan Math. Journ. 5(1958), 5-12.
- [3] N. H. Kuiper, Immersions with minimal total absolute curvature, Collegue de géometrie differentialle globale, Brexelles (1958), 75-88.
- [4] _____, On surfaces in Euclidean 3-spaces, Bullitin de la societe Math. Belgique(1960), 5-22.
- [5] _____, La courbre d'indice k et les applications convexes Séminaire de topologie et géometrie differentiallé, C. Ehresmann (1959), 1-5.
- [6] _____, Minimal total absolute curvature for immersions, Invent Math. 10 (1970), 209-238.

Chung-nam University