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COMPACTIFICATIONS OF LOCALLY COMPACT
g-COMPACT SPACES

JenpPILL KM

1. Statement of results

In this note, all spaces are Hausdorff. Our starting point is

(A) Let X be a countably compact space and let V be an open subset of
X. If both V and X-V are metacompact, then X is compact.

If V happens to be dense in the countably compact space X, we shall call
X a countable compactification of V' by X-V. In this terminology, (A) may
berephrased as

(A’) Every countable compactification of a locally compact metacompact
space by a metacompact set is a compactification.

Since every o-compact space is automatically metacompact, (A’) serves as
a compactification theorem for locally compact o-compact spaces. A conse-
quence of this version of (A’) is the following

(B) If every o~compact open subset has metacompact boundary in a normal
space X, then the intersection of all free maximal ideals of C(X) is iden-
tical with Cg(X).

Here, C(X) denotes the ring of real valued functions continuous on X,
while Cx(X) is the subring of C(X) consisting of those functions having
compact (possibly empty) supports. A maximal ideal of C(X) is free if,
for each point of X, it contains a function not vanishing at that point.

2. Proofs

By Arens and Dugundji [2, p.171], a space is compact if it is countably
compact and metacompact. Therefore, (A) will follow if we prove that X
is metacompact. To do this, let @ be an open cover of X and let g\ V
denote the open cover of V cosisting of those sets which are members of @
intersected with V. By metacompactness of V, @1V has a refinement &
which is a point finite cover of V by open subsets of V. Since V is open in
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X, it follows that & is a point finite collection of open sets in X. On the
other hand, X—V is countably compact as it is closed in the countably com-
pact space X. Thus the metacompact space X—V is compact by the Arens-
Dugundji theorem, implying that @ has a finite subcollection & covering
X—V. Metacompactness of X follows as it is now clear that FU X is a point
finite open cover of X refining @. This completes the proof of (A).

To verify (A’), we only need observe that a locally compact space is
open in any space containing it as dense subset.

Now to the proof of (B). It is shown in [8] that if a nonzero function
f lies in all free maximal ideals of C(X) then Coz(f)==the set of points at
which f does not vanish is locally compact, g-compact and totally bounded
relative to every uniform structure admissible for X. Since this and the nor-
mality of X imply that Coz(f) has countably compact closure, the support
of fis a countable compactification of Coz(f) by its boundary. But Coz(f)
has metacompact boundary by hypothesis and the support of f must be com-
pact by (A’). This completes the proof of (B) as the other inclusion is trivial.

3. An example

Pseudocompactness cannot replace the countable compactness condition for
X in (A). Indeed, if the continuum hypothesis is true, a pseudocompact
space may fail to be compact even if it is the disjoint union of a countable
discrete space and a hereditarily paracompact set. To see this, let P denote
the set of all P-points of BN—N. That is, P is the set of those points p of
BN-N such that every function in C(8N— N)is stationary on some neighborhood
of p, where BN denotes the Stone-Cech compactification of the integers N.
It is known [1, 6V that the continuum hypothesis implies that P is dense
in BN—N. Thus, Y=NUP is pseuddcompact as it meets every zero set of
BY=pN. However, Y can not be compact as there are non P-points in
BN-N. '

To prove that P is hereditarily paracompact, let Q be an arbitrary subset
of P and let @ be an open cover of Q. Since Q is a subspace of SN, @ has
a refinement by open sets of the form Q(1Coz(f), f=C(8N), which we
shall call basic open sets of Q. Thus, we may suppose with no loss of gene-
rality that members of @ are basic open sets. Since C(8N) has exactly con-
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tinuously many functions, we may also suppose by using the continuum
hypothesis that @ is well ordered so that each initial segment of @ is a
countable collection. For each B in @, let B* be the union of those members
of @ which precede B and let B’-==B—B*. We propose that these B’ form
an open cover @ of Q. First, each B* is a basic open set of Q. This is true
because cozero sets are closed under countable unions in any space. But then
B* is closed in Q as otherwise Q would contain a non P-point of SN-N. It
follows that members of @’ are open in Q. Next, if z is a point of Q, let
B be the first member of @ containing 2. Then z is in B—B*=B’, and &
covers Q. Since B’CB, the open cover @ refines @. But members of @’ are
pairwise disjoint by construction and it follows that P is hereditarily para-
compact.

The normality of X in the hypothesis of (B) is used to assure that the
support of f is countably compact if f is in the intersection of free maximal
ideals of C(X). This, however, is superfluous in a sense. As in Corollary 2
of [3, Lemma 27, it suffices to assume that countable discrete closed sets are
C-embedded in X instead of supposing that X be normal. The example Y
above shows that this latter condition can not be further weakened to the
condition that countable discrete closed sets be C*-embedded in X. In Y,
boundary of any subset of Y is contained in P, which is already seen to be
hereditarily paracompact. Thus, Y satisfies the condition that ¢-compact open
sets have metacompact boundary. On the other hand, it is readily seen that
an infinite discrete set can be closed in Y only if it is contained in P.
Therefore, every countable discrete subset of ¥ is C*.embedded in Y because
countable subsets of SN —N are C*-embedded in SN. Neverthless, the function
f defined by f(z)=1/n for n in N and f(z)=0 for = in P has the noncom-
pact set Y as support although # lies in all free maximal ideals of C(X) by
the Gelfand-Kolmogoroff theorem [17.
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