Bull. Korean Math. Soc. Vol. 11 (1974), pp. 19-21

COMPACTIFICATIONS OF LOCALLY COMPACT σ-COMPACT SPACES

JEHPILL KIM

1. Statement of results

In this note, all spaces are Hausdorff. Our starting point is

(A) Let X be a countably compact space and let V be an open subset of X. If both V and X-V are metacompact, then X is compact.

If V happens to be dense in the countably compact space X, we shall call X a countable compactification of V by X-V. In this terminology, (A) may berephrased as

(A') Every countable compactification of a locally compact metacompact space by a metacompact set is a compactification.

Since every σ -compact space is automatically metacompact, (A') serves as a compactification theorem for locally compact σ -compact spaces. A consequence of this version of (A') is the following

(B) If every σ -compact open subset has metacompact boundary in a normal space X, then the intersection of all free maximal ideals of C(X) is identical with $C_K(X)$.

Here, C(X) denotes the ring of real valued functions continuous on X, while $C_K(X)$ is the subring of C(X) consisting of those functions having compact (possibly empty) supports. A maximal ideal of C(X) is free if, for each point of X, it contains a function not vanishing at that point.

2. Proofs

By Arens and Dugundji [2, p. 171], a space is compact if it is countably compact and metacompact. Therefore, (A) will follow if we prove that X is metacompact. To do this, let \mathcal{Q} be an open cover of X and let $\mathcal{Q} \cap V$ denote the open cover of V cosisting of those sets which are members of \mathcal{Q} intersected with V. By metacompactness of V, $\mathcal{Q} \cap V$ has a refinement \mathcal{H} which is a point finite cover of V by open subsets of V. Since V is open in

Jehpill Kim

X, it follows that \mathcal{R} is a point finite collection of open sets in X. On the other hand, X-V is countably compact as it is closed in the countably compact space X. Thus the metacompact space X-V is compact by the Arens-Dugundji theorem, implying that \mathcal{Q} has a finite subcollection \mathcal{F} covering X-V. Metacompactness of X follows as it is now clear that $\mathcal{F} \cup \mathcal{R}$ is a point finite open cover of X refining \mathcal{Q} . This completes the proof of (A).

To verify (A'), we only need observe that a locally compact space is open in any space containing it as dense subset.

Now to the proof of (B). It is shown in [3] that if a nonzero function f lies in all free maximal ideals of C(X) then Coz(f)=the set of points at which f does not vanish is locally compact, σ -compact and totally bounded relative to every uniform structure admissible for X. Since this and the normality of X imply that Coz(f) has countably compact closure, the support of f is a countable compactification of Coz(f) by its boundary. But Coz(f) has metacompact boundary by hypothesis and the support of f must be compact by (A'). This completes the proof of (B) as the other inclusion is trivial.

3. An example

Pseudocompactness cannot replace the countable compactness condition for X in (A). Indeed, if the continuum hypothesis is true, a pseudocompact space may fail to be compact even if it is the disjoint union of a countable discrete space and a hereditarily paracompact set. To see this, let P denote the set of all P-points of $\beta N-N$. That is, P is the set of those points p of $\beta N-N$ such that every function in $C(\beta N-N)$ is stationary on some neighborhood of p, where βN denotes the Stone-Cech compactification of the integers N. It is known [1, 6V] that the continuum hypothesis implies that P is dense in $\beta N-N$. Thus, $Y=N \cup P$ is pseudocompact as it meets every zero set of $\beta Y=\beta N$. However, Y can not be compact as there are non P-points in $\beta N-N$.

To prove that P is hereditarily paracompact, let Q be an arbitrary subset of P and let Q be an open cover of Q. Since Q is a subspace of βN , Q has a refinement by open sets of the form $Q \cap Coz(f)$, $f \in C(\beta N)$, which we shall call basic open sets of Q. Thus, we may suppose with no loss of generality that members of Q are basic open sets. Since $C(\beta N)$ has exactly continuously many functions, we may also suppose by using the continuum hypothesis that \mathcal{Q} is well ordered so that each initial segment of \mathcal{Q} is a countable collection. For each B in \mathcal{Q} , let B^* be the union of those members of \mathcal{Q} which precede B and let $B'=B-B^*$. We propose that these B' form an open cover \mathcal{Q}' of \mathcal{Q} . First, each B^* is a basic open set of \mathcal{Q} . This is true because cozero sets are closed under countable unions in any space. But then B^* is closed in \mathcal{Q} as otherwise \mathcal{Q} would contain a non P-point of $\beta N-N$. It follows that members of \mathcal{Q}' are open in \mathcal{Q} . Next, if x is a point of \mathcal{Q} , let B be the first member of \mathcal{Q} containing x. Then x is in $B-B^*=B'$, and \mathcal{Q}' covers \mathcal{Q} . Since $B' \subset B$, the open cover \mathcal{Q}' refines \mathcal{Q} . But members of \mathcal{Q}' are pairwise disjoint by construction and it follows that P is hereditarily paracompact.

The normality of X in the hypothesis of (B) is used to assure that the support of f is countably compact if f is in the intersection of free maximal ideals of C(X). This, however, is superfluous in a sense. As in Corollary 2 of $\lceil 3 \rceil$, Lemma 2, it suffices to assume that countable discrete closed sets are C-embedded in X instead of supposing that X be normal. The example Y above shows that this latter condition can not be further weakened to the condition that countable discrete closed sets be C^* -embedded in X. In Y, boundary of any subset of Y is contained in P, which is already seen to be hereditarily paracompact. Thus, Y satisfies the condition that σ -compact open sets have metacompact boundary. On the other hand, it is readily seen that an infinite discrete set can be closed in Y only if it is contained in P. Therefore, every countable discrete subset of Y is C^* -embedded in Y because countable subsets of $\beta N - N$ are C*-embedded in βN . Neverthless, the function f defined by f(n)=1/n for n in N and f(x)=0 for x in P has the noncompact set Y as support although f lies in all free maximal ideals of C(X) by the Gelfand-Kolmogoroff theorem [1].

References

- L. Gillman and M. Jerison, Rings of continuous functions, Princeton, N.J., 1960.
 J.L. Kelley, Genreal topology, Princeton, N.J., 1955.
- [3] Jehpill Kim, A criterion that a function belong to all free maximal ideals of C(X), J. Korean Math. Soc. 5 (1968), 23-27.

Seoul National University