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COMPACTIFICATIONS OF LOCALLY COMPACT

fT-COMPACT SPACES

JEHPILL KIM

1. StateIDent of results

In this note, all spaces are Hausdorff. Our starting point is

(A) Let X be a countably compact space and let V be an open subset of

X. If both V and X-V are metacompact, then X £s compact.

If V happens to be dense in the countably compact space X, we shall caU

X a countable compactification of V by x-v. In this terminology, (A) may

berephrased as

(A') Every countable compact£ficat£on of a locally compact metacompact

space by a metacompact set is a compact£fication.

Since every a-compact space is automatically metacompact, (A') serves as

a compactification theorem for locally compact a-compact spaces. A conse­

quence of this version of (A') is the following

(B) If every a-compact open subset has metacompact boundary £n a normal

space X, then the intersection of all free maximal ideals of C(X) is £den­

t£cal with CK (X) .

Here, C (X) denotes the ring of real valued functions continuous on X,

while CK(X) is the subring of C(X) consisting of those functions having

compact (possibly empty) supports. A maximal ideal of C (X) is free if,

for each point of X, it contains a function not vanishing at that point.

2. Proofs

By Arens and Dugundji [2, p. 171J, a space is compact if it is countably

compact and metacompact. Therefore, (A) will follow if we prove that X

is metacompact. To do this, let «J be an open cover of X and let «J nV
denote the open cover of V cosisting of those sets which are members of «J
intersected with V. By metacompactness of V, «J nV has a refinement !le

which is a point finite cover of V by open subsets of V. Since V is open in
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X, it follows that !le is a point finite collection of open sets in X. On the

other hand, X-V is countably compact as it is closed in the countably com­

pact space X. Thus the metacompact space X-V is compact by the Arens­

Dugundji theorem, implying that (fJ. has a finite subcollection ;; covering

X-V. Metacompactness of X follows as it is now clear that;; U!le is a point

finite open cover of X refining (fJ.. This completes the proof of CA).

To verify CA'), we only need observe that a locally compact space is

open in any space containing it as dense subset.

Now to the proof of CB). It is shown in [3J that if a nonzero function

f lies in all free maximal ideals of C CX) then Coz (J) = the set of points at

which f does not vanish is locally compact, a-compact and totally bounded

relative to every uniform structure admissible for X. Since this and the nor­

mality of X imply that Coz (J) has countably compact closure, the support

of f is a countable compactification of Coz(j) by its boundary. But Coz(j)

has metacompact boundary by hypothesis and the support of f must be com­

pact by CA'). This completes the proof of CB) as the other inclusion is trivial.

3. An example

Pseudocompactness cannot replace the countable compactness condition for

X in CA). Indeed, if the continuum hypothesis is true, a pseudocompact

space may fail to be compact even if it is the disjoint union of a countable

discrete space and a hereditarily paracompact set. To see this, let P denote

the set of all P-points of f3N~N. That is, P is the set of those points p of

f3N-N such that every function in CCf3N-N)is stationary on some neighborhood

of p, where f3N denotes the Stone-Cech compactification of the integers N.

It is known [1, 6VJ that the continuum hypothesis implies that P is dense

in f3N-N. Thus, ¥=NUP is pseudocompact as it meets every zero set of

f3Y =f3N. However, Y can not be compact as there are non P-points in

f3N-N.

To prove that P is hereditarily paracompact, let Q be an arbitrary subset

of P and let (fJ. be an open cover of Q. Since Q is a subspace of f3N, (fJ. has

a refinement by open sets of the form QnCoz(J), jECCf3N), which we

shall call basic open sets of Q. Thus, we may suppose with no loss of gene­

rality that members of (fJ. are basic open sets. Since C Cf3N) has exactly con-
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tinuously many functions, we may also suppose by using the continuum

hypothesis that ((J is well ordered so that each initial segment of ((J is a

countable collection_ For each B in ((J, let B* be the union of those members

of r!j which precede B and let B' == B - B* . We propose that these B' form

an open cover ((J' of Q. First, each B* is a basic open set of Q. This is true

because cozero sets are closed under countable unions in any space. But then

B* is closed in Q as otherwise Q would contain a non P-point of (3N-N. It

follows that members of «)' are open in Q. Next, if x is a point of Q, let

B be the first member of ((J containing x. Then x is in B-B*=B', and (i'

covers Q. Since B'cB, the open cover eJ' refines eJ. But members of ((j' are

pairwise disjoint by construction and it follows that P is hereditarily para.

compact.

The normality of X in the hypothesis of (B) is used to assure that the

support of I is countably compact if I is in the intersection of free maximal

ideals of C (X). This, however, is superfluous in a sense. As in Corollary 2

of [3. Lemma 2J, it suffices to assume that countable discrete closed sets are

C-embedded in X instead of supposing that X be normal. The example Y

above shows that this latter condition can not be further weakened to the

condition that countable discrete closed sets be c*-embedded in X. In Y,

boundary of any subset of Y is contained in P, which is already seen to be

hereditarily paracompact. Thus, Y satisfies the condition that O"-compact open

sets have metacompact boundary. On the other hand, it is readily seen that

an infinite discrete set can be closed in Y only if it is contained in P.

Therefore, every countable discrete subset of Y is C*-embedded in Y because

countable subsets of {3N - N are C*-embedded in (3N. Neverthless, the function

f defined by fen) =l/n for n in Nand I(x) =0 for x in P has the noncom­

pact set Y as support although I lies in all free maximal ideals of C (X) by

the Gelfand-Kolmogoroff theorem [1].
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