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COMPACTIFICATIONS OF LOCALLY COMPACT

fT-COMPACT SPACES

JEHPILL KIM

1. StateIDent of results

In this note, all spaces are Hausdorff. Our starting point is

(A) Let X be a countably compact space and let V be an open subset of

X. If both V and X-V are metacompact, then X £s compact.

If V happens to be dense in the countably compact space X, we shall caU

X a countable compactification of V by x-v. In this terminology, (A) may

berephrased as

(A') Every countable compact£ficat£on of a locally compact metacompact

space by a metacompact set is a compact£fication.

Since every a-compact space is automatically metacompact, (A') serves as

a compactification theorem for locally compact a-compact spaces. A conse

quence of this version of (A') is the following

(B) If every a-compact open subset has metacompact boundary £n a normal

space X, then the intersection of all free maximal ideals of C(X) is £den

t£cal with CK (X) .

Here, C (X) denotes the ring of real valued functions continuous on X,

while CK(X) is the subring of C(X) consisting of those functions having

compact (possibly empty) supports. A maximal ideal of C (X) is free if,

for each point of X, it contains a function not vanishing at that point.

2. Proofs

By Arens and Dugundji [2, p. 171J, a space is compact if it is countably

compact and metacompact. Therefore, (A) will follow if we prove that X

is metacompact. To do this, let «J be an open cover of X and let «J nV
denote the open cover of V cosisting of those sets which are members of «J
intersected with V. By metacompactness of V, «J nV has a refinement !le

which is a point finite cover of V by open subsets of V. Since V is open in
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X, it follows that !le is a point finite collection of open sets in X. On the

other hand, X-V is countably compact as it is closed in the countably com

pact space X. Thus the metacompact space X-V is compact by the Arens

Dugundji theorem, implying that (fJ. has a finite subcollection ;; covering

X-V. Metacompactness of X follows as it is now clear that;; U!le is a point

finite open cover of X refining (fJ.. This completes the proof of CA).

To verify CA'), we only need observe that a locally compact space is

open in any space containing it as dense subset.

Now to the proof of CB). It is shown in [3J that if a nonzero function

f lies in all free maximal ideals of C CX) then Coz (J) = the set of points at

which f does not vanish is locally compact, a-compact and totally bounded

relative to every uniform structure admissible for X. Since this and the nor

mality of X imply that Coz (J) has countably compact closure, the support

of f is a countable compactification of Coz(j) by its boundary. But Coz(j)

has metacompact boundary by hypothesis and the support of f must be com

pact by CA'). This completes the proof of CB) as the other inclusion is trivial.

3. An example

Pseudocompactness cannot replace the countable compactness condition for

X in CA). Indeed, if the continuum hypothesis is true, a pseudocompact

space may fail to be compact even if it is the disjoint union of a countable

discrete space and a hereditarily paracompact set. To see this, let P denote

the set of all P-points of f3N~N. That is, P is the set of those points p of

f3N-N such that every function in CCf3N-N)is stationary on some neighborhood

of p, where f3N denotes the Stone-Cech compactification of the integers N.

It is known [1, 6VJ that the continuum hypothesis implies that P is dense

in f3N-N. Thus, ¥=NUP is pseudocompact as it meets every zero set of

f3Y =f3N. However, Y can not be compact as there are non P-points in

f3N-N.

To prove that P is hereditarily paracompact, let Q be an arbitrary subset

of P and let (fJ. be an open cover of Q. Since Q is a subspace of f3N, (fJ. has

a refinement by open sets of the form QnCoz(J), jECCf3N), which we

shall call basic open sets of Q. Thus, we may suppose with no loss of gene

rality that members of (fJ. are basic open sets. Since C Cf3N) has exactly con-
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tinuously many functions, we may also suppose by using the continuum

hypothesis that ((J is well ordered so that each initial segment of ((J is a

countable collection_ For each B in ((J, let B* be the union of those members

of r!j which precede B and let B' == B - B* . We propose that these B' form

an open cover ((J' of Q. First, each B* is a basic open set of Q. This is true

because cozero sets are closed under countable unions in any space. But then

B* is closed in Q as otherwise Q would contain a non P-point of (3N-N. It

follows that members of «)' are open in Q. Next, if x is a point of Q, let

B be the first member of ((J containing x. Then x is in B-B*=B', and (i'

covers Q. Since B'cB, the open cover eJ' refines eJ. But members of ((j' are

pairwise disjoint by construction and it follows that P is hereditarily para.

compact.

The normality of X in the hypothesis of (B) is used to assure that the

support of I is countably compact if I is in the intersection of free maximal

ideals of C (X). This, however, is superfluous in a sense. As in Corollary 2

of [3. Lemma 2J, it suffices to assume that countable discrete closed sets are

C-embedded in X instead of supposing that X be normal. The example Y

above shows that this latter condition can not be further weakened to the

condition that countable discrete closed sets be c*-embedded in X. In Y,

boundary of any subset of Y is contained in P, which is already seen to be

hereditarily paracompact. Thus, Y satisfies the condition that O"-compact open

sets have metacompact boundary. On the other hand, it is readily seen that

an infinite discrete set can be closed in Y only if it is contained in P.

Therefore, every countable discrete subset of Y is C*-embedded in Y because

countable subsets of {3N - N are C*-embedded in (3N. Neverthless, the function

f defined by fen) =l/n for n in Nand I(x) =0 for x in P has the noncom

pact set Y as support although I lies in all free maximal ideals of C (X) by

the Gelfand-Kolmogoroff theorem [1].
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