Bull. Korean Math. Soc. Vol. 11 (1974), pp. 15-17

ON THE *R*-SEMIDEVELOPABLE SPACES

Moo Ha Woo

In this paper, a class of spaces, called r-semidevelopable space is introduced by a natural way. This class of spaces lies between the class of semidevelopable spaces and the class of cushioned pair-semidevelopable spaces. We show some properties of the r-semidevelopable spaces.

A topological space X is said to be semidevelopable [1] if there is a sequence of (not necessarily open) covers of X, $\gamma = \{\gamma_n\}_{n=1}^{\infty}$ such that for each $x \in X$, $\{St(x, \gamma_n)\}_{n=1}^{\infty}$ is a neighborhood base at x. In this case, γ is called a semidevelopment for X.

A semidevelopment $\gamma = \{\gamma_n\}_{n=1}^{\infty}$ of X is said to r-semidevelopment if each $x \in X$ and closed set F not containing x, there exists an integer m such that $Int(St(x, \gamma_m) \cap Int(St(F, \gamma_m) = \phi) \cap A$ topological space X is said to be r-semidevelopable if there exists a r-semidevelopment for X.

By a cushioned pair-semidevelopment [2] for X we shall mean a pair of semidevelopments (γ, δ) such that γ_n is cushioned in $\hat{\sigma}_n$ for each n. A topological space X is said to be cushioned pair-semidevelopable if and only if there exists a cushioned pair-semidevelopment of X. Unless otherwise stated no separation axioms are assumed.

It is trivial that *r*-semidevelopable spaces is semidevelopable. The following theorem shows the relation between the *r*-semidevelopable spaces and the cushioned pair-semidevelopable spaces.

THEOREM 1. Every cushioned pair-semidevelopable space is r-semidevelopable.

Proof. Let (γ, δ) be a cushioned pair-semidevelopment. We can assume that γ_{n+1} refines γ_n for each n [2]. Let $x \subseteq X$ and F be closed set not containing x. Since $\delta = \{\delta_n\}_{n=1}^{\infty}$ is a semidevelopment, there exists an integer m such that $St(x, \delta_m) \subset \mathcal{O}F$. Thus we have $x \in St(F, \delta_m)$. For such m, we have $C \rightleftharpoons (St(F, \gamma_m)) \subset St(F, \delta_m)$. Therefore we obtain $x \equiv \mathcal{O}Cl(St(F, \gamma_m))$.

M.H. Woo

Since $\gamma = \{\gamma_n\}_{n=1}^{\infty}$ is also a semidevelopment, there exists an integer *m* such that $x \in Int(St(x, \gamma_m')) \cap \mathcal{O}Cl(St(F, \gamma_m))$. If we take $k = \max\{m, m'\}$, then we have $Int(St(x, \gamma_k)) \cap Int(St(F, \gamma_k)) = \phi$. Hence $\gamma = \{\gamma_n\}_{n=1}^{\infty}$ is a *r*-semidevelopment.

COROLLARY 2. Every cushioned pair-semidevelopable space is reguar.

A space X is stratifiable [5] if and only if to each closed subset $F \subset X$ one can assign a sequence $\{U_n\}_{n=1}^{\infty}$ of open subsets of X such that

- (a) $F \subset U_n$ for each n,
- (b) $\tilde{\bigcup}_{n}(ClU_{n})=F,$
- (c) $U_n \subset V_n$ whenever $U \subset V$.

A correspondence $F \longrightarrow \{U_n\}_{n=1}^{\infty}$ is a dual stratification for the space X whenever it satisfies the three conditions.

In [4], Chu showed that every cushioned pair-semidevelopable space is stratifiable. We have the same result in r-semidevelopable spaces.

THEOREM 3. Every r-semidevelopable space is stratifiable.

Proof. Let X be a topological space with a refining r-semidevelopment $\gamma = \{\gamma_n\}_{n=1}^{\infty}$ for X. For any closed subset $F \subset X$, let $U_n = Int(St(F, \gamma_n))$. Then $F \longrightarrow \{U_n\}_{n=1}^{\infty}$ is a dual stratification for X. For each $x \in F$, we have $x \in Int$ $(St(x, \gamma_n)) \subset Int(St(F, \gamma_n)) = U_n$. Therefore we have (a) $F \subset U_n$ for each n. For the condition (b), assume that $y \notin F$, there exists an integer m such that $Int(St(y, \gamma_m)) \cap Int(St(F, \gamma_m)) = \phi$. Therefore y does not belong to $Cl \ U_m$. Thus we have $\bigcap_{n=1}^{\infty} (Cl \ U_n) \subset F$. Since it is clear that $\bigcap_{n=1}^{\infty} (Cl \ U_n) \supset F$, we obtain (b) $\bigcap_{n=1}^{\infty} (Cl \ U_n) = F$. Since $\gamma = \{\gamma_n\}_{n=1}^{\infty}$ is a refining r-semidevelopment, it is easily shown that (c) $U_n \subset V_n$ if $U \subset V$.

COROLARY 4. Every cushioned pair-semidevelopable space stratifiable.

J.G. Ceder [3] showed that every stratifiable T_1 -space is paracompact. Alexander [1] has shown that every semidevelopable T_0 -space is T_1 . Thus we have the following Corollary.

COROLLARY 5. Every r-semidevelopable T_0 -space is paracompact.

REMARK. (1) If X be a semimetric space such that for each $x \in X$ and

16

closed set F not containing x, there exists an integer m such that $Int\left(S\left(x,\frac{1}{m}\right)\right)\cap Int\left(S\left(F,\frac{1}{m}\right)\right)=\phi$, then X is a r-semidevelopable T_0 -space. (The converse of (1) is also true.)

(2) If X is a metric space, γ_n is the collection of all spheres of radius less than $\frac{1}{n}$, then $\gamma = \{\gamma_n\}_{n=1}^{\infty}$ is a r-semidevelopment.

References

- [1] C. Alexander, Semi-developable spaces and quotient image of metric spaces. Pacific J. Math. 37 (1971), 277-293.
- [2] C. Alexander, An extension of Morita's metrization theorem, Proc. Amer. Math. Soc. 30 (1971), 578-581.
- [3] J.G. Ceder, Some generalization of metric spaces, Pacific J. Math. (1961), 105-126.
- [4] Chu, Chinku, Topological spaces with cushioned pair-semidevelopments, Bulletin of the Korean Math. Soc. Vol. 9, No. 2, (1972), 69-71.
- [5] M. Henry, Stratifiable spaces, semi-stratifiable spaces, and their relation through mappings, Pacific J. Math. 37 (1971), 697-700.

Soong Jun University