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ON THE ATOMS OF GROUP VALUED MEASURES
By JAIHAN YOON

1. The problems treated in the present paper are a group valued measure version of
results, in particular, on atoms of real measures developed in [3]). The group valued
measures in general lack some properties that play an important role in deriving such
results of real measures that we are interested in here. Therefore, we have imposed a
restriction upon the group valued measures that resembles the monotonity of real meas-
ures. With this restriction, one can define a uniformity on the ring of sets on which
the group valued measure is defined. And it is shown that the associated uniform space
is sequentially complete provided the range group is metric. Also it is shown that there
exists a relation between the nonexistence of atoms and the connectedness of the associat-
ed space. This, as it happens, resembles the results obtained by Landers [1] in part.

2. In what follows, G denotes a Hausdorff group and #%(e) the neighborhood filter
of the identity ¢ of the group G. Let R be a ring of subsets of a set S. A set function
u: R — G is a group valued measure or simply a measure unless otherwise stated, if
2(U.-5E) =lim p(E;) u(Es)--p(E,) for every disjoint sequence {E,} in R such that
U.-7E, €R. A set E with g(E)=e is an atom if p(F)=e¢ or u(F)=y(E) whenever
FcE and F in R.

Recall that a sequence of sets is monotone if it is increasing or decreasing. The same

arguments employed in [3, Theorem D, Theorem E, p. 39] prove the following
Theorems.

THEOREM. If {E,} is a monotone sequence in R suck that lim E, ¢ R, then lim y(E,)
=u(lim E,).

THEOREM. A set function p: R—G which is finitely multiplicative is a measure if and
only if it is continucus from below at every E in R, or continuous from above at the
empty set .

3. Motivated by Lemma 1 of [2], we shall impose a restriction upon group
valued measures so that some of results concerned with atoms of real measures remain
true.

DEFINITION. A measure u:R—G is said to be monotone if u(E) ¢ U for EcR and
Ucel(e), then u(F)e U whenever F—E and FeR.

It is straightforward from the above definition that x(F)=e if F is a measurable
subset of a measurable set E with z#(E)=e, and that a pair of disjoint measurable sets
cannot assume non-identity values one of which is the inverse of the other.

In what follows by a measure u:R—~G we shall mean a monotone measure. In order
to define a uniformity on R, let, for each U in %(e), U be the set of those pairs
{E,F) eRxR with u(EAF) €U, and let / be the collection of all such U. To begin
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with, it will be convenient to prove the following lemma.

LEMMA 1. Let W be a neighborhvod of e with W2 C U where U € #{e). If n(EAX)
€W and p(XAF) e W, then u(EAF) ¢U whenever E, F and X are in R.

Proof. Clearly, we have
EAF=(E—F)U (F—E)
=(E—ENRHINXHUF—-ENHI-XU
CF-ENHINX)IU CE~-(ENFHI1-X),
If Z stands for E or F, it is clear that
(@—-ENF)NX) NUENF)—X)=¢,
(Z—(ENF)—X) NX—(EQF))=¢,
and hence
C—ENMNX=U(EZ—(ENN N UIENF-X))—-(ENF)—X),
Z—(ENR)—X=(C—(ENF)-XDUX—(ENF))-(X—(ENF)).

Replacing Z by E and F in the last two equalities and substituting sets thus obtained
in the first equality, we have

EAF={(EAX)—T) U ((FAX)—~T),

where T=(X—(ENF))U ((ENF)—X). By taking account of the monotonity of g,
we have p(EAF) «U. This completes the proof.

THEOREM 2. Let p: R—G be a measure, then [ is a base of a uniformity for R
and p is uniformly continuous with respect to the topology induced from .

Proof. Averting to Lemma 1, it is obvious that 7 is a base of a uniformity. To
show that x is uniformly continuous, let U be any neighborhood of ¢. Choose a sym-
metric neighborhood V' of ¢ such that V2CU. If (E,F) ¢V, that is u(EAF) ¢V, then
#(E—F) €V and p(F—E) ¢ V. Hence, we have

2(E) - p(F)=p((E—F)U(ENF) Y u((F-E)U(ENF))
=p(E—F)"-p{F—E).
Thuos #(E) u(F) eU, which completes the proof.

LEMMA 3. If E ¢R is a given set, the mapping fg: X—>ENX for each X ¢R is
uniformly continuous on R.

Proof. This is a straightforward comsequence of the equality XNE)AXNE)=
EN(XAY).

THEOREM 4. Let p:R—G be a measure. If the associated uniform space in accord-
ance with Theorem 2 is connected, then p has no atom.

Proof. Let A be an atom, by Theorem 2 and Lemuma 3, it follows that the inverse
image (u#ofs) '(e) is a closed set. We shall show that it is also open. To do this let
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U be any neighborhood of ¢¢ G such that u(4) eU. If Xy e(uofa) 1(e), we have for
each X e U(Xg), pofa(X)=p(ANX)=p((ANX)—Xo) UANXNXy))=u((ANX)—X,).
Since (ANX)—Xo=XAX, we can not have p(AX)=p(4). Thus pofa(X)=p(4
X)=e, which proves U(Xo)=(ucfa) 1(e).

Since R is connected we must have R==(uof4) 1(¢). This is impossible because
A&(uofa)~Ye), completing the proof.

Henceforth, 8 will stand for a o-ring of subsets of a given set.

THEOREM 5. If the neighborhood filter % (e) has a countable base, then the associated
uniform space 8 is sequentially complete.

Proof. Let {U,} be a countable base for %(e). It is sufficient to show that there
exists a convergent subsequence of any given Cauchy sequence {E,}. Without loss of
generality, we may assume that U,DU,.; for all n. For each n, let {U,i be a
sequence of neighborhoods of ¢ such that U?%, ;41CUs s, Us 12U, where i=1, 2, --.
Clearly, there exists a subsequence {E;.;} of {E,} such that u(Fy; AE,,)eU), » if m<4,
v. This is the first step in the construction of the following subsequences represented
by an array

812 Evny Eys e
Szt Egq, Egp -+

such that
(a) S, is a subsequence of Sy,
(b) .u(Eh, ,ZAEI:, u)€n i-fU.‘,p lf /2, V>p,

Since S, is a Cauchy sequence, there is an integer j, such that p(E, :4E,.) € N2 Uy
if 4,v72j,. Write E,s1.1=E,, j,- By an induction, we can find a sequence

Sat1? Enrn1 Earg e

of S, such that E,., ,=E, j, where j,is an integer satisfying u(E, :4E,.) ¢ N2 U;,

for 4,v>j, and jy>j,-1 (P2>1).
It is clear that S,+; satisfies (b). In fact, for each p,

£(Eas1, 30 Enir ) = p(Ep, ji AEy, 1) € N35U4 5

whenever A, v>p.
We now go down the diagonal of the array: i.e., we consider the sequence

S: Eyy Ep, ...
Let E=lim sup E, . and let B,=,.2E;; Then, E=:lim B, and
Ep aNE=(Ep, o AB) A (B, AE)
=(EaxA(UIEy ) A (B.AE)
SN -7 (Bara nt D Enta-tat5-1)) A (BoAE).

Because n+A<juois and Enig 14=Eyrge, jars, clearly we have
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2B ntiNEpipm1, ntn-1) =2 (Ensi-1. nn1 D Enipy, jzoe)
€ N4 2iU4 p1e-1TUm nis1
for £>1. For the simplicity of notation, ﬁite, for each n>>1,
K=U.3 (En+k,n+kAEn:Hz—1; ,,+k;1), Kn=U 1Bt nrsNEnib-1.n45-1)-

Thus, for every m=>1, 1 (K,.) €U o Un nr1**Un mCUn -1 and hence u(K,) €U, ;. Since
£(K) =lim p(K,), we have u(K) € U, ,=U, and therefore £ (E, ,A(N=E; ) €U,. Now
let V be a given neighborhood of ¢ and let W be a neighborhood of e such that W2
V. Since {B,AE} is a decreasing sequence and converges to the empty set, there exists
an integer N such that yx(B,AE)CW for all n2N. Moreover we may assume that Uy
W, which implies ¢(E, ,AE) ¢ V for all > N completing the proof.

Let a measure u: 8S—G satisify the following condition

- (¥) for each E€8 and U %(e) there exists a sequence {E;} (depending on U) such
that E=U,.7E; and ux(E;) €U.

Since the measure g is monotone, the above sequence {E;} may well be assumed dis-
joint and constant from some term on: i e.,every E €8 can be represented as E={) .1 E;
and p(E;) ¢U(n, the number of E;'s, depends on U). We shall call such a finite dis-
joint collection of E;’s a decomposition of E with respect to U and denote it by {E,
E,, -+, E,: U}. :

Clearly, if p has the property (x), it can have no atoms.

THEOREM 6. If a measure p:8—G has the property () and ¥(e) has a countable
base, then the associated uniform space is connected.

Proof. Suppose that S is disconnected: i.e., there are disjoint nonempty open subsets
H and @ of S, whose union is S. The empty set ¢ ¢S belongs to one of sets & or else
@, say J. Then, there exists a set F in § with u(E)¥e. Let £={U;} be a base as in
the proof of Theorem 5. Moreover, we may assume U;(g) ¢ & and U,(E) @.

Write V;=U; and let V, be an element in & with V2 Vy. If D={E;, Ey, -, E,: V3}
is a decomposition of FE, there exists an integer £(n>¢=1) and E;,¢D such that
E—,.E.eQ@ but (E—{J,..E:,)—E ;£@ for some E, with k#i, 1<\p<{¢. To see this,
note that E—E; €@ and E;¢ & for any i.

Let B,=E, B;=E—\},.:E:,, Ry=E and R,=E, where B,—E ;c@. By an induction
we shall construct decreasing sequences {B,}, {R.} in 8 and {V,} in & such that;

(a) B,€4,

(b) Bn_Rn € @
© #(Ra) €V,
(d) Vu[Bi-11=6.

For n=2, it has been done in preceding paragraph.

There is V,+1 in & such that V,11CUu+1, Va2V, and V,11[ B, 1@ because B, <@
{the induction hypothesis) and @ is open. Let {Dj, Dy, -+, D,: V,:1} be a decomposi-
tion of R,. -Then, as in case for n=2, there is an integer #(m >¢=>1) and r such that
B,~U,.iD:, € but (B,—U,_iD:,)—D, €4, k+#i, (1=p=t). The sets B,—U..i Di
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and D, may be chosen for B,s; and R,.,, respectively, which completes the induction
on n. We note that in the above construction, B,—B,+; R, if n>>2.

To see that {B,} and {B,—R,} are Cauchy sequences in @ and X, respectively, let U
be any neighborhood of e. Reverting to the construction of {V,}, we can find an
integer N such that =N implies V,CU. Therefore, we have B,AB,;y;=B,— B,
R,, so that by (c), u(B,AB,+,) €U for n=N. Thus, {B,} is a Cuachy sequence in
@. Note that the sequence {B,—R,} (n>>2) is increasing and (By—B,) A\ (Br+p—Rasp) <
R,, from which it is clear that {B,—R,} is a Cauchy sequence in .

Since 8 is complete by Theorem 5, the sequences {B,} and {B,—R,} being arbitrarily
near as n tends to infinity, converges to a common limit. This contradicts to the choice
of the sets @ and #, completing the proof.

Let S be a locally compact Hausdorff space and B be the ¢-ring of Borel sets. A
measure u#:B—G is said to be regular at E if, for each Ue%(e), there exsist a compact
set C and an open set H of X such that CCECH and p(H-C) ¢U.

LEMMA 7. If a measure pu:B—G is regular at an atom A, there ezists a cempact set

C such that ADC and p(C)=u(A).

Proof. Let U be a neighborhood of the identity e¢ G with u(A) € U. The regularity of
u at A implies that there exist a compact set C and an open set H such that CCAcH

and p#(H-C)eU. Since p(H)=p(H—C)-p(C), u(C)=e implies u(A) eU which is
impossible.

THEOREM 8. If p:B—G is a regular measure, then for every atom A there exists a
point z in A such that p(A)=p({z}).

Proof. Let C be the collection of all compact subsets C such that A=C and u(C)=
£(A). Then, by Lemma 7, C is not empty. If C; and C; are in C, then C;NC; is in
C. Otherwise, either u(C;)=e¢ or u(C,)=e. It follows that C has finite intersection
property, and hence F={1{C: CeC} is not empty. We shall show that F consists of
single point z. If there were another point y3z, let H be any open set containing =z
but not y. Let C be any set in C, then either u(CNH)=pu(4) or u(C—H)=u(4).
Reverting to Lemma 7, if p(CNH)=pu(A), there exists a compact set KCC\H with
#(K)=p(A). This meansye F, leading to a contradiction. If u(C—H)=g(A), then
C—H being compact is in C. This is impossible since z¢ C—H. Thus F={z}CA.

Now, it remains only to prove z({z})+e. Let U be any neighborhood of ¢ such that
n(A) €U. Then u(H—z) ¢U for some open set H containing x since g is regular at
{z}. Since every set in C is compact, there exist finite number of sets C; in C such
that N,-"C;cH and px(N..1C)=p(4). If it were p({z})=e, then p(H)=p(H--z)-
p(z) =p(H~z) ¢U. The monotonity of y implies that #(,.;C;) €U, which contradicts.
our assumption. This completes the proof.
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