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LINEARLY SEMISTRATIFIABLE SPACES

By KyUnG-Bal LEe

0. Introduction.

In this paper, a class of spaces, called linearly semistratifiable spaces, is introduced.
Linearly stratifiable spaces and semistratifiable spaces are linearly semistratifiable. Many
properties of linearly stratifiable spaces and of semistratifiable spaces can be shared with
linearly semistratifiable spaces.

In Section 1, characterizations of linearly semistratifiable spaces are given. From
these it is proved that a space is semistratifiable if and only if it has a g-cushioned pair-
net. In Section 2, properties of linearly semistratifiable spaces are investigated. The
main results are: If X is a space semistratifiable over @, then

A. Every open set in X is an F,-seét,

B. Every subspace of X is semistratifiable over «,

C. X is F,-screenable and

D. Every closed continuous image of X is semistifiable over a.

It is also proved that a space is semistratifiable over @ if and only if it is dominated
by a collection of closed subsets, each of which is semistratifiable over a. In Section 3,
product theorems are proved. In Section 4, it is shown that in a space which is s:mis-
tratifiable over @, the following ate equivalent: a-Lindelof property, hereditarily a-
separability and the property that every subset with cardinality greater than @ has
a limit point. In the final section related examples are given.

In this paper, no separation axioms are preassumed. We denote the closure of a subset
A of a topological space by ¢/ A. All undefined terms and symbols are as in [7].

1. Definitions and characterizations.

DEEFINITION 1.1. An ordinal number « is called an initial ordinal number provided
for every ordinal g < a, there exists an injection from 8 to a, but there does not exist
an injection from « to . We assume that cardinal numbers and initial ordinal numbers
are the same. Let o stand for the first infinite ordinal, and Q for the first uncountable
ordinal.

DEFINITION 1.2, Let (X, z) be a topological space and « be an initial ordinal not
less than w. The space X is said to be semistratifiable over a or linearly semistratifiable
provided that there exists a map S: axz —> {closed subsets of X} (called an a-
semistratification) which satisfies the following

LSS;: For every Uer, U=U{S(, U): <a}.
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LSS;: K U, Ver and UV, then S(B,U)=S(B, V) for all 8<a.
LSS;: I y < B<a, then S, UY=S(B,U) for all U=z,

‘We will denote S(8,U) by Uy unless any confusion occur.

DEFINITION 1.3. A space X is said to be a-semistratifiable provided a is the smallest
initial ordinal for which X is semistrarifiable over a. A space which is semistratifiable
over w is said to be semistratifiable, and the map S is called a semistratification.

In the case of semistratifiable space, our definition above agrees with that of Creede
[5] because if S is a semistratification which satisfies LSS; and LSS, then there is
another semistratification which satisfies all three conditions LSS;,, LSS; and LSS..
Example 5.4 shows that this is not true in general for a > w.

DeFINITION 1.4. ([5], Creede) Let 9 be collection of ordered pairs P=(P,, Po) of
subsets of X with P, P, for all P=9, D is said to be cushioned if for every D',
(U {Py: PPy U (P PP

D is o-cushioned if it is a union of countably many cushioned subcollections.

DEFINITION 1.5. ([11], Vaughan) A collection P of pairs P= (P, Py) of subsets of
a space X is said to be linearly cushioned collaction of pairs with respect to a linear
order = provided = is a linear order on 9 such that

(U {Pi: P=(P,P)eP})U {Py: P=(P, PP}
for every subset 9 of 9 which is majorized with respect to =.

DEFINITION 1.6. A collection P of pairs P=(Py, P;) of subsets of a space (X,7) is
called a pair-net provided that for every z in X and every open U containing z, there
exists a P=(Py, Py) =D such that zeP,cP,cU.

THEOREM 1. 7. If (X, 1) is a space and a an infinite initial ordinal, then the follo-
wing are equivalent:

(1) X is semistratifiable over a.

(2) X has a linearly cushioned pair-net P with which a is confinal.

(3) There is a function g from a XX inte © such that (a) for each z=X,
z€N{gB o):p<a}; ) if z=g(B, xp) for each §<a, then the net {z5: g<a}
accumulates at x; and (c) if r<p<a, then g(r,z)>2g (B, x) for every z=X,

(4) There is a function g from ax X into t such that (a) for each z<=X,
Ni{gB,z}: B<a}=clfz}; (b) if z=g(B, zp) for each B<a, then the net {zp:
B < a} converges to z; and (c) if v <B<a, then g(y,2)Dg(B,z) for every z=X.

Proof. (1) => (2). Let S be an a-semistratification for X. Let any well-order be
given on 7. Define
P={UsU): B, U)Edlzif}
where axzc denotes the product set a@ Xz with the lexicographic order.

For any U<t containing z, there exists a 8 <a such that z belongs to Up by LSS,.
Thus, 2=Us=U=U. This shows that P is a pairnet for (X, 7).
To show that P is linearly cushioned, let 2’ be a subclass of 9 with an upper
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bound (Ug U). For any V such that (V,, V)&%’ for some y <a, Vj is contained in
the closed set (U {W: (W,, W)=P’ for some 7})s Thus,
d(U{Ve (V, VHeP)=(U{V: (V, V)P,
Consequently it follows that
d(U Vs (V, VYeD)cd(UiVe V,V)=ED)
c(UV:(V,V)ED})g
cy{V:(v,,Vyedl.

Since « is an infinite initial ordinal, « is clearly cofinal with 9. This completes the
proof.

(2) = (3). Let P be a linearly cushioned pair-net for X, and a confinal with 2.
There is a subclass 9'={P;: §<a} such that for every P=9 there is a 8§ <a such
that P < P,

For each z in X and each 8 <{ea, define

g(B, z)=X—cl(U {P1:2& P; and P=(Py, P))=Ppg}).
Clearly (a) and (c) hold. To show (b) holds, assume z is not a cluster point of a net
{zs: B<a}. There is a neighborhood V of z such that {zz: 8 < a} is not frequently
in V. Since a is well-ordered, there is a yo <a such that z,&V for any 7=y, So
z&cl({z,:70 =71 < a}). This means that there is a P=(Py, Py in 9 such that z=P;
P, X—ed({zyi7e =7 <a}). Let f<a be such that P =< Pz=9’. Then
z=c(U {P1:2,& Py and P = Pg})
for all y = 7, That is,
z&g(8, z,) for all y =7,.
Take d=max {8,7¢. Then =& g(d, x;).

(3) = (4). Let g be a map as is described in (3). (a) Let y= N {g(8,2): B <a}.
Then y=0N{g(B, xs): B<a} with zg=z for all 3<a. By (b), »is a cluster point
of the net {z, z, z, -}. This means y=el{}.

Conversely, assume y=cl{z}. For each g<a, g(8,») N {z}7#4 since g(B,5) is a
neighborhood of y. This implies that £ €0 {g(B, »); 8<a}. As in the above proof,
yecl{z}. Again this means that g(8, z) N {y}#¢ for all 3 < ea, which is equivalent to
yeN{gB2): g<la}.

(b) Let z=g(B, zp) for all < a and assume that {zs:8 < a} does not converge to
z. Since {zg: < a} accumulates at z, there exist a neighborhood W of z and a
cofinal subset D of a such that {z,:7&D} | W=¢. Define a new net as follows:

If =D, then let yg=z5 If B=a—D, let ys==z, where 7 is the first element of D
which follows 8.

Then z=g(8, yp) for all §<a since g(B, yp) is either g(B, zp) or g(B,z,) with 8
<r. But g(B, z,)og(7,z,); in either case, g(B, ys) contains z. Thus, z is a cluster
point of {ys: B8< a}, and hence is a cluster point of {z,: y=D}, which is a contrad-
iction. This completes the proof.

(4) => (1). Let g be a map as is described in (4). Define 2 map S: axz —>
{closed subsets of X} by

SBU)=X—U {g(8, 2): z=X-U}.
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SB,U)=X—(X—U)=U since z=g(f,z) for all < a.

Conversely, assume z& U {S(B,U): §<a}. Then z= U {g(8,y): y=X—U} for all 8
< a. This implies there is an yg&X~—U such that z=g(8, yg) for each 8<a. Thus
{s:8 < a} satisfies the condition (b) of (4), and hence converges to z. Since X—U
is closed, we have z=cl({yp: B8 <a})=X—U. Thus the proof is completed.

The following corollary is another characterization of semistratifiable spaces by means
of o-cushioned pair-net.

COROLLARY 1.8. A necessary and sufficient condition for a space to be semistratifiable
is that the space has a o-cushioned pair-net.

Proof. By the remark following the definition 1.3, X is semistratifiable if and only
if it is semistratifiable over w. The theorem 1.7 shows that X has a linearly cushioned
pair-net 9 with which o is cofinal. Let i be the embedding of w into P and i(n) =P,.
Let

@nz{PE@:Pn£P<Pu+l}
for each positive integer z. Since each 9, is majorized by P,.;, 9, is cushioned.

Conversely, it is easily verified that a ¢-cushioned collection is linearly cushioned.

This completes the proof.

Linearly semistratifiability is a generalization of both semistratifiability and linearly
stratifiability ([11]). As the example 5.2 shows, there exist linearly semistratifiable
spaces which fail to be semistratifiable or linearly stratifiable.

The next characterization justifies the terminology linearly semistratifiable.

PROPOSITION 1.9. Let (X, 7) be a space. X is linearly semistratifiable iff there is a
linearly ordered set A and a map S: Axtr —> {closed subsets of X} which satisfies

LSS;, LSS, and LSS;.
We omit the proof (see [11], Proposition 2.9). As in the case of linearly stratifiable

spaces, if X is a-semistratifiable, then a is a regular (i.e., there exists no strictly
smaller ordinal which is cofinal with «) initial ordinal.

The following is a generalization of Vaughan’s result, which is wuseful to make
examples.

PROPOSITION 1. 10. If (X,7) is a Ti-space wkich is semistratifiable over a regular
infinite initial ordinal a, then every subset F whose cardinality is strictly less than a is
a clesed discrete subspace.

2. Properties of linearly semistratifiable spaces.

“Ve shall now give some results for linearly semistratifiable spaces which can be easily
extended from the analogous results for semistratifiable spaces and linearly stratifiable

spaces.

DEFINITION 2.1. Let m be an infinite cardinal number. A subset of a space X is
called an F,-set if it is a union of a collection € of closed subsets with the cardinality
of @ less than or equal to m. An Fx,-set is called an F,-set as usual.
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THEOREM 2. 2. Every open set in a space which is semistratifiable over « is an F,-set.

THEOREM 2.3. Anry subspace of a space which is semistratifiable over a is semistra-
tifiable over a.

Proof. Let S be an a-semistratification of X, and Y be a subspace of X. Define
S’: axty —> f{closed subsets of Y}

by the restriction of S to ry-open subsets of X. It is easily verified that S’ is an a-
-semistratification for Y.

DEFINITION 2.4. Let a be an infinite initial ordinal. A space X is said to be F,-
screenable iff every open cover of X has an a-discrete closed refinement. An F,-scree-
nable space is said to be F,-screenable (or subparacompact, 13D.

J. G. Ceder [4] proved that stratifiable spaces are paracompact, and J. E. Vaughan
T11] generalized this proposition to linearly stratifiable spaces. On the other hand, G.
D. Creede [5] showed that semistratifiable spaces are subparacompact. The present
:auther do not know whether linearly semistratifiable spaces are subparacompact or not.
We prove only the following

THEOREM 2.5. A space which is semistratifiable over o is F,-screenable (hence, is
‘hereditarsly F,-screenable).

Proof. Let S be an a-semistratification for X and let an open cover % of X be given.
‘Give an well-order = on U= {U,:¢t=I}. We will construct an a-discrete closed refinement
X by transfinite construction. For any 8 < a, define

HlB=S(ﬁs Ul)a
Hyy=8B,U)—U{U;: s€I and s <t}
.and let gﬂﬁ= {HtﬁztEI}.
To show that each #; is discrete, let V,=U; and
Vi=U,~S@B, U U, s<a}).
Then H,;,V, for each t=I]. Moreover, each V, meets exactly one member of HFs, say
H tf- .

For any z in X, let ¢ be the first element of I such that z<U,. Since
U=U{SB,Un): g<a}, there is a <« such that 2&5(8,U,). Then z=H,,

That is, = {#s: f<a} covers X.

THEOREM 2.6. Closed continuous image of a space which is semisiratifiable over a is
.semistratifiable over a.

Proof. Let f be a closed continuous surjection from X to Y and let S be an a-semi-
stratification for X. Define
T: axty —> {closed subsets of Y}
by TG, V)=F(S(B, f1(V))). Then T is an a-semistratification for Y.

LemMA 2.7. Let X be semistratifiable over a and Y be a closed subspace of X with
«an a-semistratification S. Then there is an a-semistracification T for X such that

§B, VNY)=T@ V)NY
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Jor every B < & and every open (in X) V.

Proof. Let S’ be any a-semistratification for X. Define an a-semistratification 7" for
X as follows:

TB V)=8S@BVNY)US B V-Y).

Now it is clear that T satisfies all the desired conditions.

LEmMA 2.8. The union of two closed (in the union) subspaces which are semistrati~
fiable over a is also semistratifiable over .

Proof. Apply Lemma 2.7 with respect to the common subspace.

COROLLARY 2.9. (Creede) The umion of two closed (in the union) semistratifiable
spaces is semistratifiable.

DeFINITION 2.10. (Michael) Let X be a space and £ a collection of closed subsets of
X. Then & dominates X if, whenever AcX has a closed intersection with every
element of some subcollection &, of & which covers 4, A is closed.

THEOREM 2.11. A space is semistratifiable over a iff it is dominated by a collection
of closed subsets, each of which is semistratifiable cver a.

Proof. Let & be a dominating collection of subsets of X, each of which is semistr-
atifiable over a. Consider the class G of all pairs of the form (@,,S,), where 8,=& and
S, is an a-semistratification for C,= U {B: B<€,} which will be denoted by S:(8, V)=
Vs (V relatively open in C;). We partially order G by letting (€., S;) = (€., S;) whe-
never €,=0; and, for each relatively open U in C,, U,sNC,=UNC,) forall § < a.

We now show that any simply ordered subfamily {@,, S;): s=A} of G has an upper
bound @,= U {€;:s=A}. For each relatively open U in C, and for all 8 < e, let

S:(B,U)=Uy= ‘2 A(U NCH s
For each t'=A,
Utﬂ N Ct"—"‘gq(U ﬂ Cs) s8 ﬂ Ct’
‘—‘SGUA{(UﬂC,) ,pﬂCt-} =UnN Ct') 8-

Thus, U;NC, is closed in C, for every #’©A, which implies that U, is closed in X
since & is a dominating collection. Moreover, S, is an a-semistratification for C,.
Consequently, (@, S;) is an upper bound of {€,,S,: s A}.

Let (@y, Sy) be a maximal element of G which exists by Zorn’s Lemma. To complete
the proof we need only to show that @=&. Suppose not. Then there exisis an Ec
£—0y. Let 6,=0,U {E}. Now C, and E are closed subspaces semistratifiable over @, and
hence C, is semistratifiable over @ by Lemma 2.8. Thus, by Lemma 2.7, one may
obtain an a-semistratification S, of C; such that

U;p ﬂ Co—’—‘ (U ﬂ Co)o,s

for all f<<a. Consequently (€ Sp) < (€3, S;), contradicting the maximality of
(@y, Sp). Hence @,=& and X is semistratifiable over a.

The following is a generalization of Creede’s result.
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COROLLARY 2.12. A space is semistratifiable iff it is dominated by a collection of
semistratifiable subseis.

3. Products.

In [5] G.D. Creede proved that a countable product of semistratifiable spaces is
semistratifiable. In this section, we shall prove that a finite product of spaces semistrati-
fiable over the same a is again semistratifiable over @. But Example 5.3 shows that if

@ > w, then a countable product of spaces semistratifiable over @ need not be linearly
semistratifiable.

LeMMA 3.1. (Vaughan) Let a be an infinite initial ordinal number, and let {A;: 2
eA} be a family of linearly ordered sets such that o has cardinality greater than that
of A, and « is cofinal with A, for all A= A. If Ais finite or « is a regular ord-

inal, then A=I{Ay: A=A} can be well-ordered so that for every majorized H=A we
have Pr, (H) is majorized in A; for all A=A, and a is cofinal in A. Further, if «
is the smallest initial ordinal cofinal with each A, then a isthe smallest initial ordinal
cofinal with A.

Modifying the proof of theorem 5.2 of [11] we get the following

THEOREM 3.2. Let o be an initial ordinal number =w. Let X; be semistratifiable
over a for each i  w. Then the following hold;

A. IT{X;: i=n} is semistratifiable over a for dll n < w.

B. If each X; is a-semistratifiable, then I1{X;: i =1} is a-semistratifiable for each
n < .

C. (Creede) If each X; is semistratifiable, then Il {X;: i <w} is semistratifiable.

D. If each X; is semistratifiable over the regular initial ordinal a for all A=A and
a is strictly larger than the cardinality of A, then I {X;:A< A} with the box topology
(7], 8V) is semistratifiable over a.

4. Generalizations of Lindelof property, separability and N;-eompactness.

DEFINITION 4.1. ([8] Lutzer and Bennett, [5] Creede) Let m denote an infinite
cardinal number. A space X is m-separable if X contains 2 dense subset having cardi-
nality =< m; X is m-Lindelof if every open cover of X has a subcover with cardinality
=< m. A space is Ny-compact if every uncountable subset has a limit point.

LEMMA 4.2. Let a be an infinite initial ordinal (=infinite cardinal), and X be a

space in which every open set is an F,-set (see 2.1). If X is a-Lindelof, X is hered-
itarily a-Lindelof.

Proof. Let Y be a subspace of X, and let an open cover % of Y be given. Since V
=y {U:U<U} is open in X, V is an F,-set. Hence there exist closed sets {4 8 <a}
such that U=U {45: 8 <al.

For each 8 <a, {X-Agl U¥ is an open cover of X. By «-Lindeléf property of X,
there is a subfamily %z of % with cardinality = a such that {X-Ag} U%s covers X. Let
Q= {%s. Then Y is a subfamily of % with cardinality = a which covers Y.
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THEOREM 4.3. In a Ty-space which is semistratifiable over a, the followiag eare
equivalent;
(1) X is a-Lindelof.
(2) X is hereditarily a-separable.
(3) Every subset of X with cardinality > a has a limit point.

Proof. (1) == (2). By Theorem 2.2 and Lemma 4.2, X is hereditarily a-Lindelof.
It suffices to show that X is a-separable. Let g:axX ~——> t be a function satisfying
the conditions of Theorem 1.6.(4). For each 8 <a, {g(B, z):x=X} isan open cover
of X and, since X is a-Lindelof, there is a subset Dg of X with cardinality =a such
that {g(8, x): x=Dg} covers X. The set D= {Dg: 8 <a} has cardinality =a. To
show that D is dense in X, let = be any point of X. For each 8 <a, there exists an
25 Dy such that 2&g(8, x5). By the condition on g, the net {zz: < a} converges
to z. Hence, z=¢l D.

(2) == (3). Assume there is a subset F with cardinality > « which has no limit
point. Each 2 in F has an open neighborhood U, which meets F at exactly one point
z. This implies that F is dicrete (hence, is not a-sparable) subset of X.

(3) = (1). Let % be an open cover of X and suppose that % has no subcover with
cardinality ==a. By Theorem 2.5, % has an a-discrete closed refinement JF=U {Fs: 8
< a}. Since % has no subcover with cardinality = e, there is 2 y <a such that &,
has cardinality > a. Let X’ be a subset of X consisting of exactly one point of each
nonempty element of &F,. The set X’ has cardinality ~> &« and has no limit point, since
X’ is discrete and X is a T)-space.

When a=0, we get the following

COROLLARY 4.4 (Creede) In a semistratifiable T\-space X, the following are equiv-
alent;
(1) X és Lindeldf,
(2) X is hereditarily separable and
(38) X is $y-compact.

5. Examples.

EXAMPLE 5.1. There is a compact Hausdorff space which is not linearly semistratifia-
ble. Let X=[0, 07 and give a topology as follows: Each point is isolated except O, and
the basic neighborhood of Q are co-finite subsets. Since any infinite set missing Q is
not closed, X is not linearly semistratifiable by Propesition 1.10.

ExaMmrLE 5.2. There exists a linearly semistratifiable space which is neither semistra-
tifiable nor linearly stratifiable.

Let X be the space of example H described by Bing in {1] This space is not linearly
siratifiable since it is not paracompact, but it is linearly semistratifiable (in fact, it has
a o-discrete net-work). Let Y=[0, Q] and equip Y with the smallest topology larger
than the order topologs for which every point is isolated except Q. Then Y is an Q-
stratifiable space, which is not semistratifiable since Q is not a G;.

Now let Z be the topological sum of X and Y, Then Z is linearly semistratifiable by
Lemma 2.8. Z is neither linearly stratifiable (see [11], Theorem 4.1. B) nor semistr-
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atifiable (see [5], Theorem 2.2).

EXAMPLE 5.3. A countable product of O-stratifiable spaces need not be linearly. semi-
stratifiable. Let X; be the space Y in Example 5.2 for each i <w. Since each X; has
isolated points, X=F{X;: i <o} has convergent sequences, hence is not linearly
semistratifiable by Proposition 1. 10.

ExXAMPLE 5.4. Every Ti-space (X,7) has a “semistratification map” S:axr —
{closed subsets of X} which satisfies LSS; and LSS; of Definition 1.2. Take « to be the
cardinal number of X. Well-order X so that X={zs: 8 <a} and define

f{zg}, if 2=,
S8, U)={

@, otherwise.
It is easy to see that S satisfies LSS; and LSS,. Now if this map S also satisfies LSS;,
then X would be linearly semistratifiable. This is impossible (see Example 5.1.).
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