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LINEARLY SEMISTRATIFIABLE SPACES

By KYUNG-BAI LEE

O. Introduction.

In this paper, a class of spaces, called linearly semistratifiable spaces, is introduced.
Linearly stratifiable spaces and semistratifiable spaces are linearly semistratifiable. Many
properties of linearly stratifiable spaces and of semistratifiable spaces can be shared with
linearly semistratifiable spaces.

In Section 1, characterizations of linearly semistratifiable spaces are given. From
these it is proved that a space is semistratifiable if and only if it has a q-cushioned pair­
net. In Section 2, properties of linearly semistratifiable spaces are investigated. The
main results are: If X is a space semisn:atifiable over a, then

A. Every open set in X is an Fa-set,
B. Every subspace of X is semistratifiable over a,
C. X is Fa-screenable and
D. Every closed continuous image of X is semistifiable over a.

It is also proved that a space is semistratifiable over a if and only if it is dominated
by a collection of closed subsets, each of which is semistratifiable over a. In Section 3,
product theorems are proved. In Section 4, it is shown that in a space which is s~mis­

tratifiable over a, the following are equivalent: a-LindelOf property, - hereditarily a­
separability and the property that every subset with cardinality greater than a has
a limit point. In the final section related examples are given.

In this paper, no separation axioms are preassumed. We denote the closure of a subset
A of a topological space by cl A. All undefined terms and symbols are as in [7J.

1. Definitions and characterizations.

DEEFI}.lITION 1. 1. An ordinal number a is called an initial ordinal number provided
for every ordinal 13 <a, there exists an injection from 13 to a, but there does not exist
an injection from a to 13. We assume that cardinal numbers and initial ordinal numbers
are the same. Let ill stand for the first infinite ordinal, and Q for the first uncountable
ordinal.

DEFINITION 1. 2. Let (X, '1:") be a topological space and a be an initial ordinal not
less than ill. The space X is said to be semistratijiable over a or linearly semistratijiable
provided that there exists a map S: a x 'I:" - {closed subsets of X} (called an a­
semistratijication) which satisfies the following

LS-S1: For every U E'I:", U = U {S (f3, U): .B<a}.
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LSS2 : H U, VEX- and Uc:v, then S(f3,U)cS(f3, V) for all f3<a.
LSS3 : H r < f3 <a, then S(r, U) cS(j3, U) for all U EX-.

We will denote S (13, U) by Up unless any confusion occur.

DEFINITION 1. 3. A space X is said to be a-semistratifiable provided a is the smallest
initial ordinal for which X is semistrarifiable over a. A space which is semistratifiable
over w is said to be semistratifiable, and the map S is called a semistratification.

In the case of semistratifiable space, our definition above agrees with that of Creede
[5J because if S is a semistratification which satisfies LSSI and LSS2> then there is
another semistratification which satisfies all three conditions LSSh LSS2 and LSS3•

Example 5. 4 shows that this is not true in general for a >w.

DEFINITION 1.4. ([5J, Creede) Let qJ be collection of ordered pairs P= (Ph P 2) of
subsets of X with PICP2 for all PEqJ. qJ is said to be cushioned if for every qJ'c:qJ,

cl (U {PI: PEqJ'}) c U {P2: PEqJ'}.

qJ is a-cushioned if it is a union of countably many cushioned subcollections.

DEFINITION 1.5. ([l1J, Vaughan) A collection qJ of pairs P= (Ph P2) of subsets of
a space X is said to be linearly cushioned collection of pairs with respect to a linear
order -< provided -< is a linear order on :P such that

cl(U {PI: P=(PhP~EqJ'})CU {P2 : P=(PhP~E'JJ'}

Jor every subset :P' of qJ which is majorized with respect to -<.

DEFINITION 1.6. A collection qJ of pairs P= (Ph P~ of subsets of a space (X, x-) is
eaIIed a pair-net provided that for every x in X and every open U containing x, there
exists a P= (PI, P2) EqJ such that XEPICP2CU.

THEOREM 1.7. If (X, x-) is a space and a an infinite initial ordinal, then the follo-
wing are equivalent:

(1) X is semistratifiable over a.
(2) X has a linearly cushioned pair-net :P with which a is confinal.
(3) There is a function g from a x X into 7: such that (a) for each xEX,

xE n {g(j3, x) :13 <a}; (b) if xEg(j3, xfJ) for each f3 <a, then the net {xp: f3 <a}
accumulates at x; and (c) if r < f3 <a, then g(r, x) :::;:)g(j3, x) for every xEX.

(4) There is a function g from a x X into 7: such that (a) for each xEX,
n{g(j3, x}: j3 <a} =cl {x}; (b) if x E g(f3, xfJ) for each 13 <a, then the net {xp:
fi<a} converges to x; and (c) ifr<f3<a, then g(r,x):::;:)g(j3,x) for every XEX.

Proof. (1) > (2). Let S be an a-semistratification for X. Let any well-order be
given on T. Define

qJ= {(UfJ> U): (j3, U) Ea x T}
k"

where a x T denotes the product set a x 7: with the lexicographic order.
ler

For any UE7: containing x, there exists a j3 <a such that x belongs to Up by LSSr•

Thus, XEUpCU=U. This shows that qJ is a pair-net for (X, T).
To show that qJ is linearly cushioned, let:p' he a subclass of :P with an upper
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bound (Up, U). For any V such that (Vr, V)E5>' for some r <a, V/l is contained in.
the closed set (U {W: (Wp W)E~' for some r})/l' Thus,

cl(U {V/l: (Vr, V)E~')C(U {V: (Vp V)E~})/l'

Consequently it follows that

cl(U {Vr: (Vr, V)E~')ccl(U {V/l: (Vr' V)E5>')

c(U {V: (Vr, V)E5>'})/l

c U {V: (Vr' V)E~'}.

Since a is an infinite initial ordinal, a is clearly cofinal with~. This completes the­
proof.

(2) > (3). Let ~ be a linearly cushioned pair-net for X, and a confinal with ~.

There is a subclass !p'={P/l: 13 <a} such that for every PE5> there is a f3<a such
that P :::: P p'

For each x in X and each 13 <a, define

g(f3, x)=X-cl(U {P1:Xt£P2 and P=(P1, P2)-<P/l})'

Clearly (a) and (c) hold. To show (b) holds, assume x is not a cluster point of a net
{xp: 13 <a}. There is a neighborhood V of x such that {x/l: 13 <a} is not frequently
in V. Since a is well-ordered, there is a ro <a such that xrt£V for any r>ro. So
xG;.cl ({xr : ro -< r <a} ). This means that there is a P= (Ph P2) in ~ such that XEP1

cP2cX-el({Xr:ro~r<a}). Let f3<a be such that P-<P/lE~'. Then

xEcl( U{P1 :Xrt£P2 and P:::: P/l})

for all 7 ~ 70- That is,

xt£g(f3, x r) for all r ~ roo
Take o=max {f3, ro}. Then xt£g(o, xo).

(3) > (4). Let g be a map as is described in (3). (a) Let yE n {g(f3, x): 13 <a}.
Then yE n {g(f3, xfJ): 13 <a} with X/l=X for all 13 <a. By (b), y is a cluster point
of the net {x, x, x, ...}. This means yEel {x}.

Conversely, assume yEel {x}. For each 13 <a, g(f3, y) n {x} =f=.ifJ since g(f3, y) is a
neighborhood of y. This implies that x E n {g (13, y); 13 <a}. AI; in the above proof,
yEel {x}. Again this means that g(f3, x) n {y}"*ifJ for all 13 <a, which is equivalent to
yEn {g(f3, x): f3<a}.

(b) Let xEg(f3, x/l) for all 13 <a and assume that {x/l:f3 <a} does not converge to
X. Since {x/l: 13 <a} accumulates at x, there exist a neighborhood W of x and a
cofinal subset D of a such that {Xr:rED} nW=¢. Define a new net as follows:
If f3ED, then let YfJ=X/l' If f3 E a-D, let YfJ=Xr, where 7 is the first element of D
which follows 13.

Then XEg(f3, Y/l) for all 13 <a since g(f3, YfJ) is either g(f3, X/l) or g(f3, x r) with 13
<r. But g(f3, x r) =:Jg(r, xr); in either case, g(f3, Y/l) contains x. Thus, x is a cluster
point of {Y/l: 13 <a}, and hence is a cluster point of {xr: rED}, which is a contrad­
iction. This completes the proof.

(4) > (1). Let g be a map as is described in (4). Define a map S: ax-r ----+

{closed subsets of X} by

S(f3,U)=X-U {g(f3, x): XEX-U}.
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S({3,U)c:.X-(X-U)=U since XEg({3,x) for all {3<a.
Conversely, assume xE5;: U {S({3, U): {3 <a}. Then xE U {g({3, y): YEX-U} for all {3
<a. This implies there is an YpEX-U such that xEg({3, yp) for each {3 <a. Thus
&p:{3 <a} satisfies the condition (b) of (4), and hence converges to x. Since X-U
is closed, we have xEcl( {yp: {3 <a} )c:.X-U. Thus the proof is completed.

The following corollary is another characterization of semistratifiable spaces by means
of q-cushioned pair-net.

CoROLLARY 1. B. A necessary and sufficient condition for a space to be semistratifiable
is that the space has a l1-eushioned pair-net.

Proof. By the remark following the definition 1.3, X is semistratifiable if and only
if it is semistratifiable over CIJ. The theorem 1. 7 shows that X has a linearly cushioned
pair-net 5> with which CIJ is cofinal. Let i be the embedding of CIJ into 5> and i(n) =P".
Let

5>,,= {PE5>:P1I < P <P 1I+1}

for each positive integer n. Since each qJ" is majorized by P 1I+h 5>" is cushioned.
Conversely, it is easily verified that a q-cushioned collection is linearly cushioned.

This completes the proof.

Linearly semistratifiability is a generalization of both semistratifiability and linearly
stratifiability ([l1J). As the example 5. 2 shows, there exist linearly semistratifiable
spaces which fail to be semistratifiable or linearly stratifiable.

The next characterization justifies the terminology linearly semistratifiahle.

PROPOSITION 1.9. Let (X, z-) be a space. X is linearly semistratifiable iff there is a
linearly ordered set A and a map S: A x .. ~ {closed subsets of Xl which satisfies
LSSh LSSz and LSS3•

We omit the proof (see [l1J, Proposition 2. 9). As in the case of linearly stratifiable
spaces, if X is a-semistrati:6.ahle, then a is a regqlar (i. e. , there exists no strictly
smaller ordinal which is connal with a) initial ordinal.

The following is a generalization of Vaughan's result, which is useful to make
examples.

PROPOSITION 1.10. If (X, z-) is a T1-space which is semistratifiable over a regular
infinite initial ordinal a, then every subset F whose cardinality is strictly less than a is
a closed discrete subspace.

2. Properties of linearly semistratifiable spaces.

',Ve shall now give some results for linearly semistratifiahle spaces which can he easily
extended from the analogous results for semistratifiahle spaces and linearly strati:6.able
spaces.

DEFINITION 2.1. Let m he an infinite cardinal number. A subset of a space X is
c.alled an Fm-set if it is a union of a collection t2 of closed subsets with the cardinality
of @ less than or equal to m. An FN.-set is called an Fa-set as usual.
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THEOREM 2.2. Every open set in a space which is semistratifiahle over a is an Fa-set.

THEOREM 2.3. Any subspace of a space which is semistratifiahle over a is semistra­
.tifiable over a.

Proof. Let S be an a-semistratification of X, and Y be a subspace of X. Define

S': a x Ty ----;,. {closed subsets of Y}

by the restriction of S to Ty-open subsets of X. It is easily verified that S' is an a­
·semistratification for Y.

DEFINITION 2.4. Let a be an infinite initial ordinal. A space X is said to be Fa ­

screenable iff every open cover of X has an a-discrete closed refinement. An F",-scree­
nabIe space is said to be Fq-screenahle Cor subparacompact, [3J).

J. G. Ceder [4J proved that stratifiable spaces are paracompact, and J. E. Vaughan
Tll] generalized this proposition to linearly stratifiable spaces. On the other hand, G.
D. Creede [5J showed that semistratifiable spaces are subparacompact. The present
:auther do not know whether linearly semistratifiable spaces are subparacompact or not.
We prove only the following

THEOREM 2.5. A space which is semistratifiable over a is Fa-screenable (hence, is
hereditarsly Fa-screenahle).

Proof. Let S be an a-semistratification for X and let an open cover fJ.t of X be given.
·Give an well-order <:: on rzt= {Ut:tEI}. We will construct an a-discrete closed refinement
!Je by transfinite construction. For any (3 < a, define

H 1p=S({3, U 1),

H tp=SC{3, Ut) - U{U.: sEI and s <t}

.and let !Jep= {Htp :tEl}.
To show that each !Jep is discrete, let V 1=U1 and

V t=Ut-SC{3, U{Us: s <t}).

Then HtpcVt for each tEl. Moreover, each V t meets exactly one member of [/(,;;, say
H tp.

For any x in X, let t be the first element of I such that XEUt. Since
,Ut=U {SC{3,Ut ): {3 <a}, there is a (3<a such that XESC{3,Ut). Then xEHtp'
That is, !Je= U {!Jep: {3 < a} covers X.

THEOREM 2.6. Closed continuous image of a space which is semistratijiable over a is
..semistratifiable over a.

Proof. Let f be a closed continuous surjection from X to Y and let S be an a-1'emi­
stratification for X. Define

T: a x Ty ----;,. {closed subsets of Y}

by T(f3, V) =f(SC{3,f-l (V))). Then T is an a-semistratification for Y.

LEMMA 2.7. Let X be semistratifiable over a and Y be a closed subspace of X with
.an a-semistratification 8. Then there is an a-semistratification T for X such that

8(/3, VnY)=T(f3, V) ny
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for every ~ <a and every open (in X) V.

Proof. Let B' he any a-semistratification for X. Define an a-semistratification T for
X as follows:

T(~, V)=B(fJ, Vn¥) UB'(fJ. V-Y).

Now it is clear that T satisfies all the desired conditions.

LEM~1A 2.8. The union of two closed (in tlu! union) subspaces which are semistrati­
flable over a is also semistratiflable over a.

Proof. Apply Lemma 2. 7 with respect to the common subspace.

COROLLARY 2.9. (Creede) The union of two closed (in tlu! union) semistratiflable
spaces is semistratzjiable.

DEFINITION 2. 10. (Michael) Let X be a space and £ a collection of closed subsets of
X. Then £ dominates X if, whenever AcX has a closed intersection with every
element of some subcollection £1 of til, which covers A, A is closed.

THEOREM 2.11. A space is semistratzjiable over a iff it is dominated by a collection
of closed subsets, each of which is semistratifiable over a.

Proof. Let til, be a dominating collection of subsets of X, each of which is semistr­
atifiable over a. Consider the class G of all pairs of the form (@t, Bt), where @tC £ and
Bt is an a-semistratification for Ct= U {B: BElle} which will be denoted by BtCfJ, V)=
Vttl (V relatively open in Ct). We partially order G by letting (@.. Bs) <: (@t, Bt) whe­
never @sC@t and. for each relatively open U in Ct, uttlncs=(unCs)stl for all fJ<a.

We now show that any simply ordered subfamily {@.. Bs): sEA} of G has an upper
bound @t= U {@s:sEA}. For each relatively open U in Ct and for all fJ <a, let

BtCfJ.U)=Uttl=U (Uncs).tl·
,eA

For each t' EA,

uttlnce·= U(UnCs)stlnct'
leA

= U{(Unc.)stlnCt'} =(Un Ct')t'tl·
,eA

Thus, UttlnCt, is closed in Ct' for every t'EA, which implies that Uttl is closed in X
since til, is a dominating collection. Moreover. Bt is an a-semistratification for Ct.
Consequently. We, Bt) is an upper bound of {O.. Bs: sEA}.

Let (00. 8 0) be a maximal element of G which exists by Zorn's Lemma. To complete
the proof we need only to show that 00=£, Suppose not. Then there exists an EE
£-00• Let @1=@OU {E}. Now Co and E are closed subspaces semistratifiable over a, and
hence C1 is semistratifiable over a by Lemma 2. 8. Thus, by Lemma 2.7. one may
obtain an a-semistratification 8 1 of C1 such that

u 1tl nCO=(unCo)Otl

for all fJ <a. Consequently (@o. Bo) < (Ob 8 1), contradicting the maximaIity of
(@g, So). Hence @o=tIl, and X is semistratifiable over a.

The following is a generalization of Creede's result.
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CoROLLARY 2.12. A space is semistratifiable iff it is dominated by a collection of
semistratifiable subsets.

3. Products.

In [5J G. D. Creede proved that a countable product of semistratifiable spaces is
semistratifiable. In this section, we shall prove that a finite product of spaces semistrati­
:fiable over the same a is again semistratifiable over a. But Example 5. 3 shows that if
a > w, then a countable product of spaces semistratifiable over a need not be linearly
semistratifiable.

LEMMA 3.1. (Vaughan) Let a be an infinite initial ordinal number, and let {Al:.:l
EA} be a family of linearly ordered sets such that a has cardinality greater than that
of A, and a is cofinal with Al for all .:lEA. If A is finite or a is a regular ord-

inal, then A=H{Al: .:lEA} can be well-ordered so that for every majorized HcA we
have Prl (H) is majorized in Al for all .:lEA, and a is cofinal in A. Further, if a
is the smallest initial ordinal cofinal with each A., then a is the smallest initial ordinal
cofinal with A.

Modifying the proof of theorem 5. 2 of [l1J we get the following

THEOREM 3.2. Let a be an initial ordinal number >- w. Let Xi be semistratijiable
over a for each i <w. Then the following hold;

A. H {Xi: i -< n} is semistratifiable over a for all n <w.
E. If each Xi is a-semistratifiable, then H {Xi: i -< n} is a-semistratijiable for each

n<w.
C. (Creede) If each Xi is semistratifiable, then H {Xi: i <w} is semistratifiable.
D. If each Xl is semistratifiable over the regular initial ordinal a for all .:lEA and

a is strictly larger than the cardinality of A, then H {Xl:.:lEA} with tke box topology
([7J, 3V) is semistratifiable over a.

4. Generalizations of Lindelof property, separability and ~l-eompaetness.

DEFINITION 4. 1. ([8J Lutzer and Bennett, [5J Creede) Let m denote an infinite
cardinal number. A space X is m-separable if X contains a dense subset having cardi­
nality -< m; X is m-Lindelof if every open cover of X has a subcover with cardinality
-< m. A space is ~l-comPact if every uncountable subset has a limit point.

LEMMA 4. 2. Let a be an infinite initial ordinal (=infinite cardinal), and X be a
space in which every open set is an Fa-set (see 2.1). If X is a-Lindelof, X is hered­
itarily a-Lindelof.

Proof. Let Y be a subspace of X, and let an open cover 1L of Y be given. Since V
= U {U:UElL} is open in X, V is an Fa-set. Hence there exist closed sets {Ap: .s <a}
such that U= U {Ap: .s <a}.

For each .s <a, {X-Api U1L is an open cover of X. By a-LindelOf property of X,
there is a subfamily lLp of 1L with cardinality -< a such that {X-Ap} UlLp covers X. Let
C}9= UlLp• Then C}9 is a subfamily of 1L with cardinality -< a which covers Y.
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THEOREM 4.3. In a Trspace which is semistratifiable over a, the followiag are
equivalent;

(1) X is a-Lindelof.
(2) X is hereditarily a-separable.
(3) Every subset of X with cardinality > a has a limit point.

Proof. (1) =="> (2). By Theorem 2.2 and Lemma 4. 2, X is hereditarily a-Lindelof.
It suffices to show that X is a-separable. Let g:a x X ~ 1: be a function satisfying
the conditions of Theorem 1. 6. (4). For each fJ <a, {g(fl, x) :XEX} is an open cover
of X and, since X is a-Lindeliif, there is a subset Dp of X with cardinality:::: a such
that {g(fJ, x): :1;EDp} covers X. The set D= U {Dp: fl <a} has cardinality <: a. To
show that D is dense in X, let x be any point of X. For each fJ <a, there exists an
xfJEDp such that xEg(fl, xp). By the condition on g, the net {xp: fl <a} converges
to x. Hence, xEcl D.

(2) -=> (3). Assume there is a subset F with cardinality > a which has no limit
point. Each x in F has an open neighborhood U:r which meets F at exactly one point
x. This implies that F is dicrete (hence. is not a-sparable) subset of X.

(3) ==> (1). Let 'it be an open cover of X and suppose that 'it has no subcover with
cardinality <a. By Theorem 2.5, 'it has an a-discrete closed refinement ;::}= U {;::}p: fl
<a}. Since 'it has no subcover with cardinality <: a, there is a r <a such that ;::}r
has cardinality> a. Let X' be a subset of X consisting of exactly one point of each
nonempty element of ;::}r. The set X' has cardinality > a and has no limit point, since
X' is discrete and X is a T1-space.

When a=w, we get the foI!owing

CoROLLARY 4.4 (Creede) In a semistratifiable T1-space X, the following are equiv-
alent;

(1) X is Lindelof,
(2) X is hereditarily separable and
(3) X is NI-compact.

5. Examples.

EXAMPLE 5. 1. There is a compact Hausdorff space which is not linearI, semistratifia­
ble. Let X =[0, QJ and give a topology as follows: Each point is isolated except Q, and
the basic neighborhood of Q are co-finite subsets. Since any infinite set missing Q is
not closed, X is not linear!) semistratifiable by Proposition 1. 10.

EXAMPLE 5.2. There exists a linearly sem.istratifiable space which is neither semistra­
tifiable nor linearly stratifiable.

Let X be the space of example H described by Bing in [I]. This space is not linearly
stratifiable since it is not paracompact, but it is linearly semistratifiable (in fact, it has
a q-discrete net-work). Let Y=[0, QJ and equip Y with the smallest topology larger
than the order topologj for which every point is isolated except Q. Then Y is an Q­
stratifiable space, which is not semistratifiahle since Q is not a G6•

Now let Z be the topological sum of X and Y. Then Z is linearly semistratifiable by
Lemma 2.8. Z is neither linearly stratifiable (see ell], Theorem 4.1. B) norsemistr-
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atifiahle (see on Theorem 2. 2).

EXAMPLE 5.3. A countable product of D-stratifiable spaces need not be linearly. semi­
stratifiahle. Let Xi be the space Y in Example 5.2 for each i <lrJ. Since each Xi has
isolated points, X=U{Xi : i <lrJ} has convergent sequences, hence IS not linearly
semistratifiable by Proposition 1. 10.

EXAMPLE 5.4. Every T1-space (X, T) has a "semistratification map" S:a x T ~

{closed subsets of X} which satisfies LSS1 and~ of Definition 1.2. Take a to be the

cardinal number of X. Well-order X so that X= {xp: fJ <a} and define

{

{xp}, if XpEU,
S(fJ,U)=

,p, otherwise.

It is easy to see that S satisfies LSS1 and LSS2• Now if this map S also satisfies LSSs,
then X would be linearly semistratifiable. This is impossible (see Example 5. 1. ).
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