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DISTRIBUTIONS AND P.D.E. (I)

By EULYONG PAK AND JONGSIK KiMm

1. The algebraic structure of the space of the rest function.

Let © be an open subset of R®. We denoted by C7(Q) the space of infinitely smooth
functions with compact supports in Q. The element of C7(Q) is called a test function.
C7(Q) becomes an algebra under usual multiplication and becomes an LF space under
the inductive limit topology.

We shall use the usual definitions and terminologies for algebra as are given in
Jacobson [4] and we refer elementary properties of C7(Q) to Treves [9]. When p=0,
we set M,={f=CF7(Q);f(p)=0}. When f=C7(Q), supp f denotes the support of f.

PropPOSITION 1. The ideal M of C7(Q) is mazimal modular iff for some p=Q,
M=M,.

Proof. We shall use the theory of Banach Algebra (cf. Rickart [6] p.123). Let
C..(Q) be the space of continuous functions on the locally compact space Q vanishing at
co, Cy(f2) is a self-adjoint subalgebra of C.(Q) seperating @ where f=C§(Q) is quasi-
regular if inf {[|1—f(w)| =0} > 0.

Therefore C7’(Q) has the carrier space of all maximal modular ideals topologically
isomorphic to Q. Since this isomorphism is given by M, —> p, our proposition
follows.

Simillar proof proves

PROPOSITION 2. Let K be a compact subset of Q, and let Cy(K)={f=C¢(Q); supp
fcK). An ideal M of Ci(K) is mazimal modular iff M={f<C¢(K); f(p)=0}
for some p=Int K, the interior of K.

The next proposition follows from the existance of C* partitions of unity subordinated

to a locally finite open covering for Q.

PROPOSITION 3. An ideal M ofCy(Q) is mazimal iff M=M, for some p=0.
From the above propositions it follows

PROPOSITION 4. For any ideal M of C7(Q) the followings are equivalent;
1. M is maximal,
2. M is mazimal modular and
3. M is primitive.

Since C7(Q) is not a radical algebra, we get the following proposition.
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PROPOSITION 5. CF(Q) is semi-simple.

PROPOSITION 6. CF(Q) is a topological algebra under the inductive limit topology.
In this case every maximal ideal is closed.

Proof. If a net {f,} converges to f in C7(2), then there exists a compact set K
in @ such that f belongs to C§F(K) and [f.} converges to f in C5(K). Let g be an
element in C7(2) and 8 be a scalar. Then f.g, fatg, £Af belongs to C (supp z|UK)
and the corresponding nets converges to fg, f+g and f8f, respectively, Therefore C
(Q) is a topological algebra. To see that any maximal ideal is closed, it is enough to
show that, for any compact K of @, M[1C7(K) is closed in C§(K). But it is clear
when MC7(K)=C% (K). When M[|Ci(K) is a maximal ideal in C*,(K), it follows
easily from the fact that M CF(K)={f=Cs(K) M;f(p)=0} for some p in Int K.

2. BSectional representation of distributions

When 2 is an open subset of R", the space of all continuous linear functional on the
LF space C§(Q) is called the space of all distributions, and its element is called a
distribution, which we shall denoted by @'(Q). General properties of @' (Q) is contained
in Treves [9] and Schwartz {7]. @'(Q) with strong dual topclogy is not a Frechet
space. In this section we shall imbed @'(2) in a fiber of Frechet spaces and try to

investigate how much @'(Q) is close to the Frechet space. We shall heavily depend on
the method of fibrating a locally convex space on Banach spaces contained in Treves

[107].

DEFINITION 1. Let i and Nj (j=0, 1,2, ---) be positive integers. We set B' (N, Ny,
Ny, ) ={f=C;(Q); supp f=K; and ¢';(f) =N (j=0,1,2+)}. Here {K; is a
sequence of compact subset of Q such that K;—Int K;;; and JK;=0 and g¢; is a semi-
norm on C7(Ky) such that ¢ (f)=supp{ 5 |Df(z) | =K.

The following proposition follows from the definition of bounded sets.

PROPOSITION 1. The family of B'(Ny, Ny, N, -)as i and Nj vary over integers
Sforms a base of bounded sets of Ci(Q).

DEFINITION 2. A family of bounded sets {B.}aeo such that BicB,—=B;c-=B,=++
is called a simple chain of bounded sets.

When [Cg} = is another simple chain of bounded sets, we say [Csl refines {B.)
provided that for any a=Q there exists S=I" such that B,—Cj.

PROPOSITION 2. For any simple chain of bounded sets of Ci(Q) there exists a simple
chain of countable bounded sets which refines the given simple chain.

Proof. Sinee {B(N,!, Ny, N, ---)} forms a base for bounded sets of C:(Q), we
may assume that the elements of the given simple chain are of the forms Bi(Ny, --).

Suppose that the net [i} of indices i has no supremum. Then we can choose an
increasing subsequence {iy, 75, +-+} refining the net (i}, Then [BY(NG¥, Ny «} =10
refines the given simple chain.
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1f {i] has a supremum, let j be the first index of N such that {Nj} has no supre-
mum. Then we can choose an increasing subsequence (N3, Nj't,--} which refines
{Nj}. Then {B*(Ny%, Nt =)} i=pz... refines the given simple chain.

If all the indices have supremums, our proposition in trivially true.

Strong dual topology of @'(Q) is given by taking the polar of bounded sets of C;(Q)
as open sets. Of course this topology is determined by the continuous semi-norms cor-
responding to the convex open neighberhoods of O. When p and ¢ are semi-norms on
Q’(Q), p= q means p(u) = q(u) for all «’s=D'(Q). For a semi-norm p we set ker p=
=D (Q); p@)=0}. If {p}iao i an increasing net, we call {p;}iu0 a simple chain of
semi-norms. Anoter simple chain of semi-norms {g;} jur is said to refine {pi}i=o iff for
any i=Q there exist j=I" such that p; =g;.

The following proposition is the dual form of the Proposition 2.

PROPOSITION 3. Let {p)iag be a simple chain of continuous semi-norms on D'(Q).

Then exists a simple chain of countable countinuous semi-norms which refines the given
simple chain.

DEFINITION 3. A simple chain composed of countable continuous semi-norms {py, po,
.-} is called a Frechet spzctrum which we shall denote by pii.e. p=(py, pu ).

When p and ¢ are Frechet spectrums, p = ¢ means that p; = ¢; for all i=1, 2,3, -
Let P the set of Frechet spectrums. If for any p and ¢ in P there exist r in P such
that p=r and ¢ =r, we say that P is irreducible. if 'L‘J’ 'U’ {ps is the base for all

the continuous semi-norms on @' (Q), we say that P is complete. D’'(Q) has complete
irreducible families P of Frechet spectrums; for example, the set of all Frechet specir-
ums is complete and irreducible. Such a family is called a spectrum of D'(Q).

When P is a specirum, ﬂp 'ﬂ,ker £i=0. We shall set ker p= ‘ﬂ}:er‘b;. In the

sequel of this section E shall be @' (Q).

YWhen p=(p, ps, ++-) is a Frechet spectrum, the pseudometrizable space {E:p;, pa, =]
will be denoted by E¢uii.e., B¢y is the space E equipped with the topology determined
by the countable semi-norms py, ps, ---. Let us set FE¢p/kerp—E,. Then E, becomes a
metrizable space.

The Frechet space obtained by completion of E, shall be denoted by E, Via the
cannonical imbedding E = E(, = E, = E,, we get a continuous linear mapping
wyt E = B,

Let ¢ be another Frechet spectrum such that ¢ = p. Then ker pCkerq and hence
the identity mapping on E can be tranfered as a continuous linear mapping =?,: E,
= £, We also get that if r = ¢ = p, w?,=w?, wh,.

When p runs over a spectrum S, the disjoint union F of E, becomes a fiber set on
F. A section s on P is mapping from P into F such that s{p)=E,.

DEFINITION 4. When 5 is a section on P, s is called a regular section iff for any p
and g in P, p= g implies s(g) =w?,(s(p)).

We shall denote by I'(P) the set of regular sections on P. I'(P) is a linear space.
If we define that a net {s,} of regular sections converges to s iff {s.(p)} converge to
s(p) in EP for all p in P, then I'(P) is a Hausdorff locally covex linear topological
space,
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In fact this topology is determined by semi-norms s —> supp p; (s(p)) where A is
PEA

finite subset of P and ¢ is an integer.

One can see easily that I'(P) is complete from the fact that w?; is continuous. When
u is an element in E, p —> w,(x) is a regular section, which we shall denote by
wyu. From the definition of topology on r(pP), it follows that « —> w,u is contin-
uous. Moreover ker wp=1] {ker p; p=PF] and hence w, is one to one.

PROPOSITION 4. When P is a irreducible complete spectrum, D'(Q) and I'(p) are
topologically isomorphic under wp.

Proof. We know that w, is an one to one continuous linear mapping. We notice first
that w, 7 is continuous on wy(E) when w,(E) is equipped with a topology induced by
the topology on I'(P). If a net {w,(u.)} converges to w,(x), then since for any p in
P and for any i pi(ue—u) —> 0, {u.} converges to u. This show that w?™! is conti-
nuous. Since D'(Q) and I'(P) are complete Hausdorff spaces, to finish our proof it is
enough to show that w,(@'(Q)) is dense in I (P).

Let A be afinite subset of P and i be any integer. Since P is irreducible, there exists
p in P such that for all p in A g= p. Let s be any element in /'(P). Then for any
&> 0 there exist u in @'(Q) such that p;(s(p) —w,(w)) <e.

But since p =g,

g:(wi s(p) —whew? (u)) = pi(s(p) —w,y(a)) <e
This shows that w,(D’(Q)) is dense in I'(P).

3. Existance theorem of differential polynomials in @'*(Q)

Let Q be an open subset of R* and P(D) be a differential polynomial on R*. We
can set

P (D) = E Qvisen, E,-..DllengD,,".“

=53"a _on . On
L e azlvl ax"ﬂ.

where @y, v are complex. We shall assume that the degree of P(D) is z. Let
C#(Q) be the space of Chfunctions with compact support in 2. Let ©'#(Q) be the
continuous dual of Ci(Q). We shall denote by &’(Q) the space of distributions with
compact support.

DerINITION 1. Let # be the distribution. The Ck-singular support of u, which we
shall denote by Cksing supp u, is the smallest closed set F such that » is C*-function
on Q—F.

In this section we shall generalize Hoermander’s result [2] (Cf, Thm 38.6.4. Hoerm-
ander [371). We shall give a sufficient condition on @ such that P(D) DDy =D (D).
In particular, the definition of Ct.strongly P convexity gives a little more concrete
meaning of strongly P convexity.

We shall prove the following technical lemma.

Lesuma, Consider the following 6 compact subsets of
H1cH'—H! and K 'cK'cK!
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and continuous semi-norms p on Ci™(Q) and q one C{(Q).
We shall assume the followings.
(1) K is contzined in the interior of K"
(2) For any u in &' (Q)
supp P(—D)u—H! implies supp «=K™! and
Cising supp P(—D)ucH™! implies C***1sing supp a—K L.
{3) For any f=Ci(Q)
¢(f) =sup [f(2)].
(4) For any f=Cit(Q)
supp fK® implies p(f) = ¢(P(—D)f).
Under this assumptions for any ¢ > ( there exists a continuous semi-norm ¢’ on C§(Q)
such that
(a) for any f=Co(Q) ¢’ (f) =q(f)
(b) for any fF=Ci(Q)
supp fH ! implies ¢’ (f)=(14+&)g(f) and
(¢) for any F=Ci+t(Q)
supp fCK' implies p(f) = ¢’ (P(—D)f).

Proof. We shall follow Hoermander’s proof in the case of i=co and shall modify it
patiently. Let ® be the completion of {f=Ci*(Q); supp FCK'Y with respect to semi-
norms g (P(—D)f) and sup |D¥P(—D)f () | where % runs over multiindices such that

b=k + kot tb, =1 and K over compact subsets of U=Q—H"1, Clearly ¢ is a
Frechet space. Since Cy™(Q) is dense in Cj** (@), there exists a constant C such that
for any f in Cy™*(Q) with supp f=K!

1£1] 22 =C sup IP(=D)f ()]l

Therefore by (3) @ can be canonically imbedded in L2(KY).

The linear map f — P(—D)f maps {f=Ci"(Q) ; supp f<KY into Ci(Q) and
with the restriction mep of functions on @ to functions on U induces a continuous linear
map from @ into C*(U).

Then, for all u=®, P(—D)u is a Ci-function on Ujthat is, Cising supp P(—D)u
CH'. Therefore by (2) z is a C***Lfunction on V=0—K! By the closed graph
theorem the restriction of the domain @ of the elements of @ to V is a continuous linear
map from @ into C*H1(Q). '

Let r be any semi-norm on C/(U), If r is continuous, then ¢’=(1+&)g+r satisfies
always the conditions (a) and (b).

Let us now suppose that there is no such » satisfying the condition (¢). Then there
exists a sequence of functions in C5™(Q), say {f;}, such that supp f;=K! and such that

p(f5) =1+e, q(P(—D)f;) <1 and P(—D)f; —> 0 in Ci*(U).
Clearly {f;} is bounded in ® and hence in L2(X'). Hence there exists f in LZ(KD)

such that a sussequence of {f;} converges weakly to f in L2(KY). On the other hand
P(—D)f; —> 0 in C'(U). Hence P(—D)f=0 on U. By the first condition of (2)
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supp fcK™1; ie, f=0on V. Since J:® —> C*71(V) is continuous, {Jf;} is
bounded in C#*#+1(V). By the Ascoli’s theorem {Jf;} has a compact closure in C***(V)
and from the above reasoning it follows that Jf; — 0 in C¥ (V).

Let % be an element in C;”(K") such that y is identically 1 on the neighborhood of
K1 It exists due to (1).

Then fi’=(Q1—p) f;—>0 in C*(Q). Hence P(—D) f//=—=0 in CI(Q).
By the method of choosing {f;} it follows that for sufficiently large j, if we set f;”
=1f5
P(f) > 1+2¢/3 and ¢(P(—D)f;"") <1+ ¢/3.
Since supp f;/'<KP° it contradicts to (4).

DEFINITION 2. @ is Chstrongly P convex iff for any compact subset K of @ there
exists a compact subset A of @ such that for any z in & (Q)

supp P(—D)u=K implies supp «=H and
Ctsing supp. P(—D)ucK implies CH#*l.ging supp wH.

THEOREM If Q is Cistrongly P convex with respect to a defferential polynomial
P(D) of degree t, then P(D) Q@' (Q)=D'1(0).

Proof. Onec the lemma is established, the proof of Hoermander in the case i=oo
can be modified without much difficulty. We omit the details.
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