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DlSTRIBUTIONS AND P. D. E (H) 

I. The algebraic structure of the space of the rest function. 

Let Q be ar. open subset of RR. We denoted by the space of infinitely smooth 
functions with compact supports in Q. The element of C?(@ is called a test function. 
C:(@ becomes an algebra under usual multiplication and becomes an LF space under 
the inductive Iimit topology. 

ITe shall r;se the usual definitions and terminologies for algebra as are given in 
Jacobson C41 and we refer elementary properties of CY(.8$ to Treves C93. When p ~ 9 ,  
we set ;M+= (f ~ C r ( l 2 )  ; f ( p )  "01. Khen f =CT(Sd), supp f denotes the support of f. 

PROPOSITION 1. The ided M of CY(B) is maximal modular ifl for sonas p ~ S d ,  
M= AI'? 

Proof. We shall use the theory of Banach Algebra (cf. Rickart [62 p. 123). Let 
be the space of continuous fucctions on the locdly compact space Q vanishing at 

W, C; (Q; i s  a self-adjaint subalgebra of C,(Q) sepesating Q where f €C: (D) is quasi. 
regular if inf ( 11-f (W) l ; wsDj  > 0. 

Therefore C? (Q) has the carrier space of all maximal. modular ideals topologically 
isomorphic to Q. Since this isomorphism is given by JTT* -4 p, our proposition 
f ollo\%~s. 

Simillar proof proves 

PROP@ITION 2. Let K be a compact suhzet of Q, and let C; ( K )  = {f cCS(J?) ; supp 
f cK).  An ideal M of C: ( K )  is maximal pnoddar iff M= { f ECF (K) ; f ( p )  =Q] 
fo r  some p ~ I 7 e t  K, the interior of K. 

The next proposirion follows frorn the existance of C" partitions of unity suborhnated 
to a locally finite open covering for 0. 

PROPOSITIOS 3. An ideai M oft%'@) i s  maximak i f f  i!d=Mp for same $=Q. 
From the above propositions i t  foIIows 

PROPOSITION A. For ally ideal M of the followings are equivaknt; 
1. M is maximal, 
2. M is nzuximal modular and 
3. M is primitive. 

Since Cy(Q) is sot a radical algebr2, we get the following proposition. 
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PROFOSTTIO~\: 5 .  C: (Q) i s  semi-simple. 

P~?OPOSITION 6. C;(@ is a topo/o~scal aigcbra under the indzctiue limit topology. 
In  this  case every maxim& ideal is dosed.  

Proof. If a net (f,) converges to  f in CT(Q), then there exists a compact set K 
in  Q such that f belongs to  CF(K) and { f,] converges to f in CFIX). Let be an 
element in Cy(,Q) and be a scalar. Then f , ~ ,  fa+gy fif belongs to C (supp 2 U K )  
and the corresponding nets converges to fg., f +g and Pf, respectively. Therefore C; 
(Q) is a topological algebra. To Ree that any maximal ideal is closed, i t  is enough to 
show that, for any compact K of Q, 2,MflCF(K) is closed in Cg(K). But it is clear 
when 36n C; (K) =C; ( K ) .  When A f f i  C? (Kj is a maximal ideal in Cmo ( K ) ,  it fol1orr.s 
easi ly from the fact that M9 C: (K) = { f =C; ( K )  ~ I W ;  f ( p )  =OJ for some p in hit K. 

2. Sectional representation of distributions 

When Q is an open suhset of R", the space of all continuous linear functional on the 
LF space CT(Q) is called the space of all distributions, and its element is caIlcd a 

distrilrution, which we shall denoted by D'(@. General properties of B' (U) is ccntained 
in Treves i97 and Schwartz i?]. W(R) with strong dual  topcIogy is not a Frechet 
space. In this section we shaIl imhed 0'(D) in a ftber of Frechet spaces and trq- to 
investigate how much D1(Q) is close to the Frechet space. We shall heavily depend on 
the method of fibrating a IocaIly convex space on Banach spaces contained in  Treves 

rro3. 

DEFIP~ITIOV 1. Let i and ( j -0 ,  1,2, . v - )  be positive integers. IT-e set ,P (1Toi, .Vli, 
A\~7f, ...I , - { ~ G C ~ ( Q ) ;  - supp f c R i  and g i j ( f ) 5 K j " j = 0 , 1 , 2 , + . . ) ) .  Herc (K,) is a 

sequence of  cornpact subset of 8 such that K i ~ I n t  K , t l  and UKi=6a and q j i  i s  a semi- 

norm on CT(K,) ~ u c h  that qj'( f j = m j ~ ( ,  C ] D b f G )  1 ;  X E K , ) .  
, l l C ,  

The following proposition follows from the definition of bounded sets. 

P R O P C ~ I T I O ~  1. The family of B' (1\70< ,VJ', .h7& - a * )  as I and K j i  vary over i l i t p ~ e r s  
forms a base of Gavfided sets of C? [Q). 

DEFI~\ITIQS 2, h family of hounded sets {B,) ,,g such that E 1 ~ R 2 ~ B 3 c . . . z B , c . + -  
is called a sfm$le chain .of bounded sets. 

When {CF] is another simple chain of bounded sets, we say {C& I-cfi'nes {R,) 
provided that for any ag,R there exists $ET such that R,cCB. 

~ R C ~ P O S I T I O N  2. For m y  s imple  chnin qf 6owndcd sets o f  Cz (g )  there  exists a s imple  
cka" of rountable boundcd sets which refines the g i v ~ n  simple chain. 

Proof. Since {~'(n;n',  AT1', h$', .-.j forms a base for bounded sets of C; (B), we 
may aswme that the elements of the given simple chain are of  the forms R"(l"ni. a - - ) .  

Supposa that the net ( i ]  of indices i has no supremum. Then \re can choose an 
increasinq subsequence { i l ,  iS, -.) refining the net (i) . Then  {R1J(12'dj, _YIii, .-.) J j = l , q , -  - -  
refines the given simple chain. 
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If {&l has :! supremum. Iet J be the first index of A' such that ILV;) has cr: supre- 

mum. Then we can choose an increasing subsequence {ly11, A%7J:,'2, .--E which refines 
(,Vjr] , Thcn { B ' h  (KO1$, N1'r, . v . ) )  a=r,x,.. . refines the given sirnpIe chain. 

i f  all the indices have supremums, our proposition in trivially [rue. 
Strong duaI topoIogy of D'$') is given by taking the poIar of bounded sets of C;!Q) 

as open sets. Of course this topoIog~ is determined by the continuous semi-norms cor- 
responding to the convex open neighberhoods of Q. When p and q are semi-norms on 
G'@), p 5 4 means p (U) S (U) for all u ' s ~ a '  (Q ) .  For a semi-norm p we set ker p= 
{U =Br $2) a;; p ( U )  =0). If { p , )  i , ~  i an increasing net, we call {p,) ,,Q a simple chaitt of 
semi-norms. Anoter simple chain of  semi-norms ( q j j r E r  i s  said to refine {B;]  ,,Q iff for 
any i & D  there exist ~ E F  such that p, 5 qj. 

The following proposition is the dual forrn of the Proposition 2. 

PROFOSITIOS 3. Let   pi),,^ 6e a sinlple chain of C O ? I ~ ~ ~ Z P L O Z L S  semi-norms on @'(a). 
Then exists la siniple chain of countable countinuons semi-norms which refilaes the glsen 
simple chain. 

DEFISITION 3. X simple chain composed of countable continuarls semi-norms ( p i ,  p?, 
- v - )  i s  called a Frech~ t  spzctmrm which we shall denote by P; i. e. P= (p1, $2, . * a ) .  

I&','hen p and q are Frechet spectrums, p 5 q means that p; 5 g, for all i=l, 2, 3, ..-. 
Let P ihe set o l  Frechet spectrums. If for any p and q in  P there exist r i n  P such 
that p 5 P. and q 5 r, we say that P is irreducible. If U U (p , )  is the base for all 

, < P  ,,l, 

the continuous semi-norms on Q'(Q), we say that P i s  complete. D'(8) has coizpIete 
irreducible f a ~ ~ i l i e s  P of Frechet spectrurrs: for example, the set of a!] Frechet spectr- 
urns is comclete ar-d irreducible. Such a far-nily is cal!cd a spectrzt?n of Dr(Q). 

When P is a spectr:!rn, ~l 9 ker p,=O. We shall set Iier p= n kerp , .  In the 
$ < P  9 <,  P I P P  

sequel of this section E shalI be D' (Q). 
7S'hcn p= ( p l ,  p ,  - - a )  is a Frcchet spectrum, the psecdometrizable space { E ;  PI, ...j 

will be denoted by E(*); i. e., Ecpl  is the space E equipped with the topolcgy determined 
by the countable semi-norms p I ,  P?, v .+ .  Let us set Ecp)!kerp=Ep. Then E p  bec~mes a 

metrizable space. 
The Frechet spice obtained by completion of E, sha!I be denoted by kp. Via the 

cannonical imbedding E EcPj ==* E* kp, we get a continuous linear mapping 
wp: E E p .  

Let q be another Frechet spectrum such that g 5 p. Then ker pcker and hence 
the identity mapying on E can be tranfered as a continuotrs linear mapping wqp: gp 
a 2,. 'Ilre also get that if s 5 q 5 p, wP,=wP,.wP,. 

When p runs over a spectrum S, the disjoint union F of Ep becomes a fiber set on 
F. A section s on P is mapping irom P into F such that s ( ~ ) E E ~ .  

DEFIXITION 4. When s i s  a section on P, s i s  called a regular section iff for any p 
and q in P, p 5  q impIies s(q)=wP,(s (p) ) .  

mre shall denote by r ( P )  the set of regular sections on P. S ( P )  is a linear space. 
If we define that a net {S,) of reguIar sections converges to s iff (S,($)] converge to 
S($) in kp for  all p in P, then T(P) is a Hausdorff !oca!ly covex linear topological 
space. 
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In fact this topology is determined by semi-norms s --;. supp pi (S($)) where A is 
,E A 

finite subset of  P and i is an integer. 
One can see easily that T(P) is complete from the fact that W+, i s  continuous. When 

U is an element in E, p -+ mp(a)  is a regular section, which we shall denote by 
w p .  From the definition of topology on T ( P ) ,  it fo!lows that zc 4 w,u is contin- 
uous. 3fcreover k ~ r  W*= n {ker g;  p' P) and hence wp is one to one. 

PRDPOSITIOM 4. When P i s  a irreducible complete spectrunz, 0'IQ) and TIP) are 
tofidogically isomorphic under wp 

Proof. We know that W* is an one to one continuous linear mapping. Tl'e notice first 
that W,-l  is continuous on m) ( E )  when wp (E)  is equipped mith a topology induced by 
the topo!ogy on I'(P). If a net {wp(u,))  converges to wp(u) ,  then since for any p in 
P and for any i pi(a,-U) + 0, {gm) converges to u. This show that wp-l is conti- 
nuous. Since iDr(Q) and F ( P )  are complete Rat~sdorff spaces, to ficish our proof i t  is 
enough to  shorn that wp(CD1(Q)) i s  dense i n  r (P). 

Let A he afinite subset of P and i be any integer. Since P is irreducible, there exists 
$ in P such that for all p in A q 2 p. Let s be any element in T(P). Then for any 
E > 0 there exist U in '211(52) such that P;(B($) -wp(u))  < E. 

But since p Z g, 
gi (m: J ( P )  -wPqm*(a) 1 5 fix ($(P) -wp(uS 1 < E 

This shows that wpfSB1(0)) is dense in r(P). 

3. Existance theorem of differential polynomiaIs in 8'YQ) 

Let Q he an open subset of R" and P(D)  be a differentia1 polynomial on Rn. TTe 
can set  

P (D) = C a~,, ,,, , ... . .D1*1DZw~DA1~ 

where a,,,,,, are camplex. We shaU assume that the degree of P(D)  is t. Let 
Cok(S1) be the space of Ck-functions with compact support in Q. Let W k ( R )  be the 
continuous dual of CS (Q). We shall denote by &'(Q) the space of distributions mith 
compact s~rpport. 

DE~INITIOS 1. Let W be the distrihution. The Ck-siagalar szrppod of U, rh ich  we 
shall denote by Cb-sing supp tx, is the smalIest closed set F such that u is CK-function 
on D-F. 

In this sectioq we shaIl generalize Hoermander's result [2 j  (Cf, TEm 3.6.4. I-Ioerrn- 
ander 3 2 ) .  I l i e  shall give a sufficient condition on P such that P (D) ark (B) =DfkLL (Q). 
In particular, the definition of C'-strongly P convexity giver a little more concrete 
meaning of s!rongly P convexity. 

T i e  shall prove the follou-ing technical Iernrna. 

L~\f:ii4. Consider the follo-wing 6 compact suh.?cts of 
H-f zHQcHI and .F- 'TK~zK'  
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and continuous semi-norms p on Ci"(Q) r i d  q one C;(ia) .  
11-e shall assume tke followings. 

(1: X-] is con~ziced in  the interior of KO. 
(2) For any n; ir t  6'(Q) 

supp P(-D) ucfT1 implies supp 2l~K-l and 
C'-sing supp P (-D) u c H - '  implies (?""'-sing supp a r K - I .  

(31 For any f &C& (Qj 

q(fj 2 w z , f ( x )  h 

(aj For any f GC~'*(Q) 

SUP? f c K o  implies p (f ) 5 ( P  (--D) f). 
Under this asscmptions for any E > 0 there exists a continuous semi-norm q' on C; (P) 

such thar 
la; for anyf=Cb(Q) q'(f) S q ( f )  
(h) for  ally f =C&(?a) 

supp f cl$-l implies g' (f ) = (1 + E )  q (f ) and 

(c) for  any f E Cb" (Q) 

supp f cK' implies p (f ) 5 Q' (P (- D ) f )  

Proof. We shall feIIew Hoermandef s proof in  the case of i=- and shall modify it 
~ a t i e n t l ~ .  Let b be the completion of {f GC&+' (Q) a); supp f rK1)  with respect to semi- 
norms (P (-D)f) and sup ;D" ( -D)f  ( X )  ] where k runs over multiindices such that 

291; 

[k :=.i?1+k2L.+.+h7 5 i and K over compact subsets of U= Q-H-l. Clearly 0 is a 

Frechet space. Since Cbrf2) is dense in CL+*(@, there exists a constant C such that 
for any f in Coi+c(Sa) with sup? f c K X  

Elf l l  L~ S C ;;g HP (-D)f ( X )  II. 

Therefore by (3) @ can be canonically imbedded in LZ(K1). 
The Iinear map f --+ P(-D) f maps { f ~cd'~(Q) ; supp f c K 1 }  into C'@) and 

with the restriction mep of functions on D to functions on U induces a continuous h e a r  
maT from 0 into C"(U). 

Then, for all UF@, P (-D)u is a C'-function on U; thar is, C'-sing supp P(-D) 
CH'. Therefore by (2) 18 i s  a CL'6'1-function on V=Q-K-l. By the dosed graph 
theorem the restriction of the domain B of the elements of 0 to V is a continuous linear 
map from @ into C''t"'(D). 

Let r be any semi-norm on C"(G ). If r is continuou~, then q'= ( I - F ~ j g f  r satisfies 
always t h ~  conditions (a) and (h) .  

Let us now suppose that there i s  no such r satisfying the condition (c). Then there 
exists a sequence of f~nct ions  in CLLt (G), say { f j ] ,  such that supp f , r X 1  and such that 

p ! f j )  ZIL&, q ( P ( - - D ) f j )  < l  and P ( - D ) f j  0 in CoYUj). 
cl earl:^ If,) is bounded in # and hence in L2(K') .  Hence there exists f in LZ(K1) 
such that a sussequence of (f,) converges weakly to f in LZ(K1). On the other hand 
P ( - D ) f j  4 0 in C i ( U ) .  Hence P(--D) f=O on L". By the first condition of (2) 



24 Eulyong Pak and Jongsik KKim 

supp f c K - ' ;  i. e. , f=0 on V. Since J :  0 -+ ( V )  is continuous, {J fj) is 
Sounded in  Cit*"(V). By the Ascoli's theorem { J f j }  has a compact closure in C I ' ~ ( V )  
and from the above reasoning i t  folIows that J fj -4 0 in C"-'(V). 

Let be an element in Co"(KU) such that is identically 1 on the neighborhood of 
K-'. It exists due to (1). 

Then fj'=(l-1) f j d O  in Ci+'(Q). Hence P(-D)  f i a O  in  C'(Q). 

By the method of choosing fj] it  follows that for sufficientIy large j,  if we set fjf' 

= x f P  

F(fj") > I -l-243 and (P (-D) fj") < l+ 4 3 .  

Since supp f y c K n ,  it contradicts to (4). 

DEFISITION 2.  B i s  C'-,ctrongly P convex iff for any compact subset R of Q there 
exists a compact subset H of Q such that for any U in &'(Q) 

supp P(-D)zrcK implies sup? zrcH and 
C"sing supp. P (-D) ~ c K  implies Cb'z"-si3g supp =CH. 

THEOREXI 1.f B is C"-strongly P c o m e s  wit6 respccf t o  a deffmential  polyrro7~riaE 
P (D) of degree r ,  then P(D)  Dri (Q) (Q) .  

Proof. Onec the Iernma is established, the proof of Roermnnder in the case i== 
can he modiSed without much difficulty. 'Are omit the detaiIs. 
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