
THE NUSTBER OF PARTIALLY ORDERED SETS. 11. 

In this paper we extend some of the numericaI results appearing in E23 deallnq 
with certain classes of orc!erer! sehs. Techniques, more powerful than the 
matrix ap2ronch used i n  C21, are developed, which show that particular classes af 
partially ordered sets can be enumerated by  polynomials 05 a certain type. Some of 
these pol !nomiaIs arc calculated, and then the enumeration of partially ordered sets 

is looked a t  from a graph theoretical point of view. 

The render sF~ouId consult [2] ior background and rclated resuIts, as we11 as a more 
cumpIete list of rcfcrences. The reader might find La] helpful, since some of the results 
in L21 are treated there along the lines similar to ones pursued in this paper. Basic 
properties and definitions relating to partially ordered sets can be found in [l]. 

DEFI~TTION 1. Let P(#, R )  be the number af distinct (up to isomorphism) ~ a r t i e l  
orderings on a set of n elements { X , ,  5 2 ,  ---, X,] such that there exist exactly k ordered 
pairs (xi, x j ) ,  d # j ,  for which xi>zi in the given partial ordering. By P(72, h) we 
mean a set consisting of one representative from each 01 the isomorphism classes counted 
by P(n,  K ) .  O~cas iuna l l~ ,  we well abuse notian and think of P(n, K) as consisting of 
equivalence classes. In any case, P(n, K)= IP(n, k)I . 

EX.~IPLE. Thus P1/3,2) =2, since the only possible pwets are those corresponding to 
the foIIowing Hasse diagrams: 

and 

Diagram 1 

REMARK. Yoie h a t  P (n, k) = 117 In, kj 1 for all n and k,  where ]D (n, k) I is the 
quantity defrned in [Z]. Also note that P (n, h) =O for k>a(m-1) /2. 

Thus, if we let P(n) denote the numher of distinct (up to isomorphism) 
orderings which can be defined on n elements, then 
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TYEOX~II  1,  Let K25 be a71 irrt~ger. 
(a) If tn, n are in t re r s  and t l ~ r n ~ O ,  ihcn P(n,  k ) z P ( n 7 , 6 ) .  
$5) If m i s  an integtr crnd m22K, thea P(#/, h)--P@k,W).  

Proof. (a) Pick an m element set {.rl ,  - F - ,  X, ] .  Extend i t to an n element set i.r:, 
-., xg,. x,+J, - . p ,  X , ) .  Clcarly, a partial ordering 5 on r,, v + . ,  X ,  can be extended to a 
partial ordering 5" on 2-1, ---, z, hy defininq rt.~ 5" zi iff (i) i ,  j S m  and . z ' ,gyj ,  or 
(ii) i= j. Clearly, the rnappinq 

f :  (m,  L,) - P ( 7 1 ,  B )  

git*en hr. f (5) = is an injection. Thus P(n,  I:) 2 PCm, f i ) .  
(h) From ( 3  ) we know tl-iat Plm,  F) 2 P(2k,  k ) .  Let 3- I " m ,  6 ) .  

Suppose A is a part id  ordering nn the set {z,, - -  -. a,) . Let 
S,-= [xi: there exiqts xi ~ u c h  that .T~<&.T.'c~ or ~ ~ < d . ~ ~ j .  

Then IISAr 5 Z F ,  since d P lnr, L). Let l'= [jll, m - . ,  ?l7,]. Lct 

r,: LTJ - r 
be an injecrion. Define d ~ , s P ( 2 h ,  h) as follows: 

yi S d v J  yr for i=l, --.,2k 

and 

vi < B ~  .: yj li+.j) 

ifl 3;. y j ~ F ,  !Sd) and Fj-' (?l,) <ABo-l!~yE - The mzp 

f: P (m, k j  a F'(3.&, h)  

given by f ( A )  - d,;,, is in jective. Hence, P (m, f i ;  = P  !S/:, h) .  

TIITORT-M 2. P (p i ,  4) ==Q for  n 5 3, P (11,4) =3, Y(5.4 j = 10. P (5,4) =16, 
P(7,4)=18, atld P(n.b)=113fur n 2 8. 

Proqf. Clearly, P (n. 4) -0 lor n 2 3. From TIlecrrem 1. we know I hat P (n, $1 = 
P(8 ,4 )  for n 2 8, and that for 4 5 n 5 8 we have "natural" injections from PO:, 43 
into P ( 8 . 4 ) .  Thus we cdcuIate P(8 ,d )  and in the process prsre all the results pl.ese- 
nted abore Let d F P  (8.4). This means that there exist exactly 4 ordered pairs 

Iz,, .ri;), L=-I, -', 4 iormed jrom XI, a - . ,  rrs such that ~;r<,r~,. Idet IT,= !r;,, X , , ) ,  - a o ,  

kill .T~')) and TJ= l.%,, . . v .  x j ,b  Let 

JT: V? ===, Tn 
1 ; ~  - ; i i~ j e t i i~~~  nn the m?~ 5artrrr. 'LE+ n,, - . v ,  as,. )td C-- 4, 
be the dictinrr ~lernentq of  T,. T h e n  

! R - ]  fa,) \, ..-, II7-"unJ) 1 
i~ a partitinn of  4. 11-e ~ i 1 1  caIculste F(8 .41 ,  by considerin,- the p~rti t inns nf $ and  
r f ~ e ; ~  ca1rulat:ng a11 A'S ~ h i c h  give rise to t h a ~  partiralar The partitions rri 
4 fire: 4: 3, 1 2, 2; 2.1,1: 1,1.1, I. Co~exponding to :he partiiions 01 4 we hare tl:e 
pert in1 nrderings carrecp.mrlin,q to  t l ~ e  follclv-jng 1 3 3 ~ s ~  c!iacrarns. 

O n l y  I I , .  ' 7 ) .  2nd r.:) c,, come ,!mm elements in f (4.4 i in the j-rionnvr deqcri!~pd 
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xar:L:!z,.r l ,5737,. :::-r* 

in Theorem I. Hence P(4,4) =3. The other results are derived simdarly. 

THEQREM 3. P In, 5) =O f o r  n 5 3, P(drf, 5)  =3, P (5,5) -10, P (6,5) =25, P (7,5) =,%, 
P (Sr 5 )  =+l, P (9,5) =46, and P (n, 5) =47 f o r  n 2 10. 

Prauf. We shall not prove it, Since the proof is similar to the proof of Theorem 2. 
We wi11 just list the Hasse diagrams of the posets corresponding to the various partitions 
or' 5. See Diagram 3. 

REX~.@~RK. For convenience we provide the following table which incorporates the 

The numbers of nonisomorphic posets 
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r c q u l t ~  of Thcns~ms 2 and 3 as tv~11 nc  r ~ l n t e d  sesr~ltl: frnm ' S ,  Thwrrrm 81, which can 
I r r ,  r'lcrivrd in tltc snmc \=m!- as thc rrq~rlts nliove. 



statlnq 2nd proving a and interesting t!:eurem. 
l- r I .cO?EL~ 4. Let k 2 0 be an integer. T h n .  $ n i s  s ~ c h  that  (;) 2 8, r e  h a r e  

where A A  is the smallest nonnegatizte integer sz~ck  that ('i' ) 2 8, q j  is as dejned  in 
the proof below, and 

P l ( j ,  ($1 --K)= ( A E P ( ~ ,  ( 5 ) - k ) : a ~ d  5 there 
exists y ~ d  such tha! sz<y  and x s y j .  

For $zed k the sight hland of (t) obziously contains only jnilaly many terms. of 
course, if k > c;), P (n, (;) -8) =O. 

Proof. Let d ~ P ( n ,  (;)-kj and let C A = { ~ L L . , : ,  xJ , ) ; - - ,  (X, , ,  zjbj} be the k non- 
comparable pairs of eIen~ents in d.  As usual. we assume the underlying set of 4 is 

( x l ,  . . m ,  X,,). Let TA= {X,,, a * . ,  x,i,  xjl,  a.., xJrI - Clearly l TA 152k. TA is a poset in a 
natural way and TJ= PI ( [ T A  1, ( ' y ' )  -K). Consider the following undirected graph G,: 
the vertices of G d  are the elements of T, and the edges are the unordered pairs {xIm, 

x j J ,  m=I, v - -  7 K- 
Let Cdl, ..-, CeqJ be the connected components of Gi- Kote that q, is the n u b e r  of 

connected components G? G:. For basic graph theoretical notiocs see Cd]. (I) ~f 
C,,? and x,EC,f8, then either xi > xj or xi < X,. (2)  If zr E C ~ ~ ,  x,ECag, and xJ > 
x i  (zj  < xi ) ,  then X ,  > -.I !xj  < ZA) for x ~ . h ~  Cd3, since all elements in C,3 are 
incomparabIe in d. We know that A-TA is totaIIy ordered and has n- IT,! elements. 
From the above r e ~ a r k s ,  i t  fol1oas that each of tile components of Fd must be Iccated 
either between two e k n e n t s  of d- TA',, or above al l  elements of d-TA, or below all 
eIements of A-TA. More than one component can occupy the same position, but it is 
also clear from the above r~rnarks  that the components are naturally totaIIy ordered by 
A, so that once the pcsieions occupied by the components are chosen, they czn be fitted 
in  an unambiguous way. There are n - I Td I +l possible positions of which we must 
choose qd (repetitions allowed). Thus there are exactly 

("-'T941"v"> 
elements (see C63 in P(n,  ( i j  - R )  which give rise to T A  via the process described at 
the beginning cf the proof. But any A E P  (R, (i) -h) arises from some T A ~  P, ( j ,  (3) -h)  
for some i,, 5 j 5 2k, and hence the theorem follows. 

REMARIC. The technique used in  Theorem k is very closely related to the technique 
used by the second author in  obtaining some resu!ts dealing with the free distributive 
lattice in [S]- 

COROLLARY l. J,ct n and k be as in Theorem 4. Than F(n, (;) - k )  is a poirolynonr8'a.l 
of degree k with lendizg cocficiel?t I/&?. Thas for $zed k, P(n, (S$ -K) tends 
asymptotically nk/h.' as n-+ S. Of course this is only asefzkl f o r  calculating the fail 
and of the sequence P (n, j) where j=Q, . v + ,  (!). 

Proof. For each d ~ P ~ ( j ,  (lj-,+), J h  5 J 5 2k, the term 
( = - i T $ i ~ u d )  
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which zppa r s  in the right hand side of (+) in Theorem 4 is of degree qd in n. It is 
clear that each connected mmponent of Gd contains at least 2 elements, and since Gd 
has a t  most 2h elements, q~ 5 B, for all d. q,,=k onIy in the case where d3 i s  the 
unique element of PI  (2k, I:') -h) ,  and the coroIIary follows imrncdi3tely. 

L E \ ~ A  I. 

Diagram 4 

Proof. Deriving the results for P, (3,O) , PI (4, S), end P, (6, 12) is straightforward. 
Suppose d ~ P , ( j ,  7). A little reffection will show that U d  must have the form ((a, b) , 
{a, c ) ,  {d, c] 3 .  There are only two cases that need to be exanined: a > d ;  a < d. If 
a > d,  

Diagram 5 

and if a < d, then A E dg- 

THEOREM 5 .  P(a,  6) -3) = (n"6n2+23n-36) /6, for n 2 3, 

Proof. &=S and qdl=q2=q;=l ,  qa=q5-=2, q6=3 
Applying Theorem 4 we haye 

P(?t, (5) -2) = (n-2) t 2 (7 t  -3) +2f"m3) L ("3 = (z3-6nZL3v-36) J6. 



Diagram 6 

Proof. For PI (42) and PI (8, 24) the proof is straightforward. PI (8,24) is actually 
calculated in Corollary I. 

If d ~ P ~ C 5 , 6 ) ,  then U4 must have one of the following forms: (i) ( ( a , b ] ,  (a ,c) ,  

(a, dj , {a, e )  J ; (ii) ( {a, 6) , {a, c ) ,  {a, d)  , 16, 8) 1 ; (iii> { {a, b)  (a, cl, {h, cl, (d, eJ ; 
(iv) I (a, b )  , (a, €1, {b ,  dj , c, e) 1 ; (v) I {a, $1, {a, c l ,  16,dI, Id, ell - 

But (v) is the same as (iv) if we relabeI a as h, b as a, c as d, and d as c. Thus 
we only need work with csses (i) - (iv) . Clearly Case (i) corresponds to d4. In Case 
(ii) either a > e or a < E. If a.> e, we only get As (up to isomorphism). Similarly, 
ii a < e, we only get db. In Case &), either a > d or U < d. If a> d,  we get 

A,, and if a < d, we get A9. In Case (iv), either a > d or a < d. If a > d,  we 

only get 
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Diagram 7 

If a < d ,  W: alm get 

Diagram 8 

Thus we have calcuIatcd PI (5,6). 

If AEP, (6, I I ) ,  then Ud must have onc of the folloa-inR forms: (i) { {a, 61 , fa. c ] ,  

{a .d l ,  { ~ f ) ) ;  (iil { b , h ; ,  b , c l ,  @ , d ) ,  b , f l j ;  (iii) i b , b l ,  {a,c},  {d,el ,  V,fIl. 
In Case (i) , either a > c or a < 8. If a > C, we get dlo. If a < e, we get A,,. In Case 

(ii), e i t h e r a > d a n d a > ~ ,  o r a > d ,  a < e ,  o r a < d ,  a>e, o r a < d ,  n < e .  If 
a > d and a > B, me get dI2.  If a > d and a < e, we get Ll3. If a < d ,  a > F we get 

di2 again. Finally, if a < d, a < e we get again. In Case (iii), whether a > d or 
a < d we get dr4- 

If A f P , ( 7 ,  171, Ud must have the foIIowing form: {(a, h ) ,  { a , c j ,  {d ,c j ,  if, g]]. 
There are only three essentially different subcases which must be considered: a > d > f ;  
d > f > aid > a >  f. They give us d15, d 16, and  respectively. 

Proof. The   roof is similar to  the proof of Theorem 5 and is based upon Theorem 4 
and Lemma 2. 

REXXRK. (i) It is interesting to note that the mficients of P(n,  (3) - / L ) ,  k=O, -.-, 
4 alternate in sign. It might be interesting to investigate whether or not this i s  true 
for any K .  

(ii) Frgm Corollary 1 w e  know that the leading meficient of P (n, (g) - ,'c) is Ilk!. 
Helow U-e shall show that the second coefficient Is a1wag.s - k < k + 1 )  /2k!. 

( i i i )  Il'e nonT have enouqh information at hand to calculate 
1 D 

P(,?) - C P(d 10-k )71+1  f 3LFi+10-L10+12$9-t-61431 =63. 
1 -I 



K e  wish to deveIop a bit further the nature of the "poset polynomials" P(n, (4) - k )  
aIong the Iincs used in c51 to investigate the nature of the polynomials worked with there. 

D E F I ~ I T I O ~ -  2. Let Cl j ,  K, q )  -= {A= PI ( j ,  (I) - k )  :GJ has q connected components] . 
JTe let C, (O,O, 0)  = ($1 . 

The  following theorem is just a restatment of Theorem 4. 

THEOREM 7. Let n and A be as in Tl~eorern 4, then 

From Lemmas 1 and 2 one can easily calcuIate the values of ICI ( j ,  3, g) l 3r.d 
lC,( j ,  4, g); for all j and q. 

We wiI1 now reduce the problem of calculating Cl(], k, q )  to graph theorerica1 notions. 
For the basic terminology see [4]. 

DEFIKITON 3. (i) Let Gl (j, k, g) = {undirected graphs G: G has j vertices, K edges, 

and q connected components with all components being nontrivial]. 
(ii) Let G be an undirected graph. By c we shall mean its complement. 
(iii) Let G h an undirected By r (G )  we shaIl denote the number of ways 

(up to  isomorphism of digraphs) that an orientation can be picked for G, which turns 
it into a traiisitive digraph. Xote that loops are not aZIowed to occur in @graphs. 

(iv) Let G be an undirected graph. By <(G) we mean a set of representatives (up to  
g a p h  isomorphism) of the connected components of G. Let 

V: <(G) a N (LV the positive integers) 
be given by IP (A) i s  the number of connected components of G isomorphic to A, where 
A=%(E) 

TIIEOREM 8. Let 

F :  C, ( j ,  k ,  g) - G ( j ,  k, q) 

be given by F (d) =Gg (we are assuming that C ,  (j, K, 4) # d )  
If G g G , ( j ,  P q ) ,  then 

(r (A)  * ( A )  ]F-' (C;) I =g? fl 
ASf(G1 

(W(A))! . 
Proof. P is dearly well-defined. Let GEG, (j, R, g), then there are 

different permutations of the connected components of G. 
\Ve form a poset d ~ C , ( j ,  R, q )  as follows. Suppose RI,  . . v ,  B, is one of the permutations 
of the components of G. Pick one of the transitive orientations of B,, call i t  oi. We let 

be ordered as follows X > y iff either, there exists i such that X ,  y ~ B i  and ( X ,  y ) ~ a i ,  
or X E B , ,  yfBj,  and i < j. It is easy to see that d ~ c r  ( j , h , q ) ,  and that F(A)=G. 
Furthermore, from the discassion i n  Theorem 4 it is clear that  we actually obtain fill 
of FLYG) in this way. Thus the theorem follows. 
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COROLLARY 2 Let n and K be as a'm Theorem 4, then the secoad coefin'ent of 
P(n,  (;)-K) is -K ( R +  1)/2h!. 

Proof. It follows from Theorem g and Corollary l, that we need only consider the: terms 

!c, ( j ,  k, I I"-,"'Lq) 
where g= K-l, k. Note that in orders for Cl (3, K, #B, 
we must have that j I 2q. Thus we consider C, (S-2, R, L- I), C, (S-1, K, k-l), and 
C1 (Zk, K, K). Clearly, CI (2k-2, k, &-l) =4, and from Corollary 3. a e  know that 
2 =  It is easy to see that IGl(2h--~,k,k-~)]=1, and that for 

G&G1(2k-1, K , k - l ) :  C(G)={A,E],  where 

l 
A=o and B = o ,  

l I 
0 0 

Diagram 9 

C(A) =I, f (B)=$-2 and r(d) =r(B) =l. Thus from Theorem 8 it  follou-s that 

ICI(2K-I, 8, k - l ) ]  =(K-l)!/(K-~)!=k-1. 

The coefficient of the n2'-' term in (";h) is -k(3F-I) /2fz!, while in (K-l) (E:) it is 
- - !  Adding t11e two together we get the desired result. 

We now show how some of the preceding discussion can he generalized. 

DEFINITIOX 4. Let m 2 I. (i) Let G, ( j ,  k, q) = {undirccted graphs G: G has j vertices, 
k edges, q connected components, and each connected component has at Xeast m+l 

eiements) . 
(i3 Let C , ( j , k , q ) = { L ~ P ( j ,  ( I ) - K ) :  G d ~ G ~ ( j , h , ~ ) ] .  

Our convention is that G, (0, 0, Q )  = ( Q )  and C, (0,0,0) = ($1 
THEOREM 9. Let 

F:  C, ( j ,  R, 9) = G m  Cj, k, 4) 

bc given i5y F ( A  j =G>. 1 f G G, ( j .  k, q)  , then 

Proof. Identical to the proof of Theorem S. 

DEFIXITION 5. Let Gr,= lulldirected connected graphs G: IG I=m). Let t be an inte- 
ger. By we mean {equivalence classes (under the sjrmmetric group on t letters) 
of  sequences in Gr, of length r, i.e., sets with E eIements of Gr,, repetition being 
allou~ed]. If SE (Y"),, say  S= {&I ,  R,], by E(S)  we mean the set of all edges 
which appears in one of the B,'s (the Bi's arz a11 assumed t o  be disjoint). 

THEOREM 10. 

F,,, ( j ,  k, q )  I = 7  C C lG,+l(.i-J(mtl), k-lE!S) I, g-41. 
"6 S . ( G ' i J l ) ,  

Prao f. Let d=G, ( , j ,  h, q). The 2, companents of A which hare exactly (m -F 1) 
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elements correspond to some element S, of ) nlld the 4-& renaining components 
form an element oi G,,;I (j, - 2 ~  (m+ l), R- !E  (S) l, r7-AJ) and the theorem follo~\-S. 

DEFI~ITION 6. Let Qm= {transitive digraphs up to iwmorphism) D of cardinality ni 
A 

which arise as an orientation of a complement of some element of Gr,:. 13y lir Gm we 
1.- L 

1 

mean the Cartesian product of R copies of 9,. If TE h' Q,, suppose T=(R,, - p + ,  RA), 
1 - 1  

I 

by X ( X )  we mean C P(&), where E* (B,) is the number of edges in the graph Gi, 
%l: 

the complement 01 which, is an undirected version of Bi, i. e. , E* (B;) = IB,[ --E(Bi). 

Proof. The proofs of Theorem S and Theorem 10 contain all the essential ideas. If 
A s C ,  ( j ,  K, q)  , then G*EG, ( j ,  k, g). A orders the connected components of Gg. Suuppcqe 
there are ;Id connected components in GJ which have cardinality ( m - t l ) .  These R j  

components can occur in any of the q positions occupied I.ry the components of 6 6 ,  and 
their removal allows us to construct an e!ement of C,,, ( j - 2 ,  ( m f l ) ,  t-E,  q - R J )  
along the lines of Theorem 8, where E is the number of edges in  these various comp- 
onents. For each component A, we must take into account the r(d)  ways in which it 
originates. Putting everything together the theorem follows. 

COXCLUDING I~EMARK. Theorem 11 allows us to  caIcuIate the poset polynomials while 
"omitting" certain information- Its mmerical usefulness i s  bounded by the rate at which 

I Q r n /  grows with m. Thus we can easiIy make the transition to Cz( j>  k, q) since IQ,! 
=I. Lemmas 3. and 2 can be proven using the material d e v c l ~ ~ e d  after Theorem 7. 

Needless to say, the procedures outlined here work well for  the cases consider~d in  
L_'. The calculations carried out in  C31 can be extended to the posets conddered here 
by making suitable m~difications of the methods used there. It seems likely that several 
more of the poset polynominls can be calculated, but it is clear that the amount of 
work required increases quickly. We should note that for the actual calcuIation of 
P(=, k), for some fixed te and k,  using Theorem 7, i t  is unnecessary ta calculate 
!Cl (j, h, q) lfos any j > R. 
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