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THE CHINESE REMAINDER THEOREM

By P. RAMANKUTTY

The classical Chinese Remainder Theorem in the context of rings and ccmaximal
ideals is usually stated and proved under the hypothesis that the ring contains a mult-
iplicative identity; often the additional restriction of commutativity is also imposed.
Although it may not seem to be much of a restriction to assume the existence of the
identity, it is not necessary to do so. The existence of the identity makes it trivially
possible to express any given element of the ring as a product of any finite number of
elements of the ring (not all factors being necessarily distinct); but this type of facto-
rization can fail if the ring contains no identity. (e.g: The ring of even integers.)
Furthermore a ring in which the above factorization property holds need not necessarily
contain an identity. (e.g: The Boolean ring of all finite subsets of an infinite set).

This note presents an extension of the Chinese Remainder Theorem with neither
commutativity nor the existence of the identity assumed.

THEOREM. Let R be a ring and Ay, -+, A, comaximal ideals in R. Given clements

Tyt Tny 21 2w i R there exists an element z in R such that xExf_l{ z; (modA;)
-

Sor all i=1,2, -, n. i

DEFINITION. A, -+, A, are comaximal iff i==j implies 4;+A4;=R.
Proof. First we assert that for each i there exists an element y;=R such that

J'iEﬁZj (mod 4;) and ;=0 (mod A4;) for j#i. Clearly, it is sufficient to prove
=1

this assertion for i=1. For each j=>2, since 4;+A;=R, there exist r;=A, and a;=4;

such that z;=r;+a; Let y;—asas-a,. Then =0 (mod 4;) for j#1, and é’gzj= /i

i=2

(rj+a;)=b;+y; where by=A, so that y,= -LZ z; (mod A;). This proves the assertion.

Now let a= i}l z;y;. Since ;=0 (mod A;) for j#i, it follows that x=uz;y; (mod
A;) and the proof of the theorem is complete.

REMARK 1. The above result is an extension of the Chinese Remainder Theorem
-even if R contains an identity 1; however in this case setting =z;=1 for each 7, the
usual version results,

RemARK 2, If each element of R can be expressed as a product of two elements of R
then the converse of the above theorem is also true. Let us call a ring R factorizable
iff for each a=R there exist b,¢ in R such that a=bc. It is immediate that if R is
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factorizable then for each @=R and for each positive integer n there exist elements
ay, ***, @, in R such that e=a,asa,.

THEOREM 2. Let R be a factorizable ring and Aj, -+, A, ideals in R. If for each set
of elements zy, ", Tas 21,2y in R there erxists an element x in R such that
=z Hl 2; (mod A;) for i=1, -+, n, then Ay, -, A, are comazimal.

J=a
J=i

Proof. Clearly, it is sufiicient to prove that 4;+A4,=R. Let y=R and let 3, *+, 3,
be elements of R such that y=xv:y,. Take z;=yys, 2=y, =23 -, 2z, arbitrary,
2:=y2—vs, and z;=y; for i=2,--». By hypothesis there exists z=R such that 2=
Zi%oma, v 2, (mod A4;) and z=x.ziza-z, (mod Ap). Writing =3zye+2,=z, the above
congruences are x=y ¥’z (mod A;) and a=y (y2—y2)2 (mod 4,),

Hence (yylz—z) + (z—31 (32—y2)2) =A;+ A, This is the same as: yy==4,+ 4,
i.e. ¥=A;+A, Since y=R is arbitrary, the proof is complete.
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