The Clay Mineralogy of some Low Productive Paddy Soils In Kyonggi-Do

경기도(京畿道) 저위생산답(低位生産畓)의 점토광물(粘土鑛物)에 관(關)한 연구(硏究)

  • Shim, Sang Chil (Atomic Energy Commission, Ministry of Science and Technology) ;
  • Kim, Tai Soon (Plant Nutrition Laboratory, Korea Atomic Energy Research Institute Seoul) ;
  • Lee, Hyung Koo (Hyo Sung Woman College) ;
  • Song, Ki Joon (Plant Nutrition Laboratory, Korea Atomic Energy Research Institute Seoul) ;
  • Valencia, I.G. (Philippine Atomic Energy Commission)
  • Received : 1974.05.20
  • Published : 1974.09.20

Abstract

The samples were taken from the following localities previously classified as "Akiochi" area: Yangpyung, Puchun, and Pyungtaik, all of Kyonggi-do province. Five soil profiles were described in the field, and taken to the laboratory for physical and chemical analysis and mineralogical analysis by X-ray diffraction. The predominant clay minerals consist mainly of illite, vermiculite, chlorites and intergrade with vermiculite, and kaolinite. Illite or mica was found present in all samples and in all horizons. This was identified by the 9.83 to $10{\AA}$ (0.01) and $3.32{\AA}$ (003) basal reflections, Interhorizontal variations in mineral content and crystallinity are illustrated in their respective Xray diffractogram. Comparing the peak intensity, of the $14{\AA}$, $10{\AA}$ and $7{\AA}$ indicated the degree of weathering from the surface to the lower horizons. In general, the weathering of illite on the surface produced less pronounced $10{\AA}$ and $14{\AA}$ peak as compared to the lower horizons. The same may be said with kaolinite. On K-saturation, the $14{\AA}$ peak broadening on the low angle side was observed. This is interpreted to be due to chlorization. Heat treament from $100^{\circ}C$, $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$, and $800^{\circ}C$. caused significant changes in the different diffractograms. Heating caused collasped of the $14{\AA}$ to $10{\AA}$ and the appearance of scattered peaks between $10-14{\AA}$. This is interpreted to the presence of vermiculite chlorite intergradient. The complete collapse of the $14{\AA}$ at $800^{\circ}C$ to $10{\AA}$ with increased intensity was attributed to the preservce of vermiculite. The principal difference among the clay minerals in each horizon is the concomitant increase and decrease in intensity with depth of the $14{\AA}$, $10{\AA}$ and $7{\AA}$ diffraction spacings. Apparently the weathering of illite ($10{\AA}$) is resulting in the formation of vermiculite ($14{\AA}$) and the interstratified material being an intermediate stage and the beginning of the formation of vermiculite. Some broadening- in the 17 to $18{\AA}$ was observed in Puchun-1 Pyungtaik-1 and Pyungtaik-2 specially so in the lower horizon in the Ca or Mg-saturated sample. Heated treatment tend to shift this peak to $14{\AA}$ indicating the presence of regular layering of the interstratified complex. The high amount of extractable aluminum and iron coupled with low exchange capacity indicate that iron and aluminum plays an important role in the weathering of these soils and is responsible to the low exchange capacity, high acidity and high phosphate absorptive capacity. The results presented substantiated the weathering sequence of Jackson in that mica ${\rightarrow}$ vermiculite ${\rightarrow}$ chloritezed vermiculite ${\rightarrow}$ kaolinite.

Keywords