Metrizability of wM-spaces

by

Heung Ki Kim

Kang Won National University, Chun Cheon, Korea

This paper concerns with the metrizability of M-spaces with Gs-diagonals. Several results obtained recently on this question are:

- 1. (Zenor) An M-space is metrizable iff it has a regular Gδ-diagonal.
- 2. (Borges) A regular meta-Lindelöf M-space is metrizable iff it has a Go-diagonal.
- 3. (Ishii) A wM-space is metrizable iff it has a $\bar{G}_{\delta}(2)$ -diagonal.
- 4. (Ishii) A normal wM-space is metrizable iff it has a Ḡ_δ(1)-diagonal.
- 5. (Shiraki) A normal wM-space is metrizable iff it is a σ^* -space.
- 6. (Martin) A regular space is metrizable iff it is a c-semistratifiable wM-space.

In this paper we will show that for regular spaces all six of the foregoing metrization theorems are special cases of Corollary 5. We adopt the convention that if $\{x_n\}$ is a sequence, $\langle x_n \rangle$ denotes the range of the sequence $\{x_n\}$ and $\langle x;x_n \rangle$ denotes $\{x\} \cup \langle x_n \rangle$.

A cs-semistratification for a topological space X is a mapping g from $N \times X$ to the topology of X which satisfies the following conditions:

CS-1 $x \in g(n,x)$;

CS-2 $g(n+1,x) \subset g(n,x)$;

CS-3 if a sequence $\{x_n\}$ converges to a unique point x, then

$$\bigcap_{i=1}^{\infty} g(i,\langle x;x_n\rangle) = \langle x;x_n\rangle.$$

Here, we used the notation that

$$g(n, s) = \bigcup \{g(n, s) : s \in S\}$$

for every subset S of X.

A space is said to be cs-semistratifiable if X has a cs-semistratification. A cs-semistratification g is a semistratification (3) if g satisfies the following condition:

(*) $F = \bigcap \{g(n, F): n=1, 2, \cdots\}$ for every closed subset F of X.

Because, if U is an open subset of a space X which has a cs-semistratification satisfing (*), let $U_n = X - g(n, X - U)$. Then the sequence $\{U_n\}$ satisfies the conditions of (3, Definition1.1).

Remark. In any topological space, the sequence $\{x, x, x, \dots\}$ converges to every point in cl(x), it is clear from CS-3 that

$$\bigcap \{g(n,x): n=1,2,\} = cl(x)$$

for all $x \in X$.

THEOREM 1. A Hausdorff c-semistratifiable space is cs-semistratifiable.

Proof. Let $\{x_n\}$ be a sequence converging to x_0 in a Hausdorff c-semistratifiable space X. Since X is Hausdorff, the set $\langle x_0; x_n \rangle$ cannot have any other cluster point. This implies that $\langle x_0; x_n \rangle$ is closed and compact. For each $x \notin \langle x_0; x_n \rangle$, there exists a positive integer k such that $x \notin g(k, \langle x_0; x_n \rangle)$, and hences $x \notin \bigcap \{g(i, \langle x_0; x_n \rangle) : i=1, 2, \cdots\}$. This insures that $\bigcap \{g(i, \langle x_0, x_n \rangle) : i=1, 2, \cdots\} \subset \langle x_0, x_n \rangle$. The reverse inclusion is clear from CS-1.

COROLLARY 2. Any space with a $\overline{G}_{\delta}(1)$ -diagonal is cs-semistratifiable.

Proof. If a space has a $\overline{G}\delta(1)$ -diagonal, it is Hausdorff. Now apply Theorem 1 and (10, Theorem 1).

A topological space X is a β -space provided that there is a mapping g from $N \times X$ to the topology of X such that $x \in g(n, x)$ for all n and all x and if $x \in g(n, x_n)$ for some $x \in X$ and a sequence $\{x_n\}$ in X, then $\{x_n\}$ has a cluster point. Hodel proved that a space is semistratifiable iff it is both a β -space and a σ^* -space (4). Martin proved that a regular space is semistratifiable iff it is a c-semistratifiable β -space (10). But it remains true when c-semistratifiabilities are replaced by cs-semistratifiabilities.

THEOREM 3. A regular space is semistratifiable iff it is a cs-semistratifiable β -space.

Proof. That a regular semistratifiable space is a cs-semistratifiable β -space is an easy consequence of Theorem 1 and (10, Theorem 3).

For the converse, let X be a regular cs-semistratifiable β -space with a cs-semistratification g such that cl $g(n+1,x) \subset g(n,x)$ for all $x \in X$ and all n and such that if $a \in g(n,b_n)$ for $n=1,2,3,\cdots$, then the sequence $\{b_n\}$ has a cluster point. Let $x,x_n \in X$ such that $x \in g(n,x_n)$ for $n=1,2,3,\cdots$ we will show that $\{x_n\}$ converges to x.

The sequence $\{x_n\}$ has at least one cluster point x; moreover, every subsequence of $\{x_n\}$ also has at least one cluster point. Suppose y is a cluster point of $\{x_n\}$ distinct from x. Choose asubsequence $\{x_{ni}\}$ of $\{x_n\}$ with $x_{ni} \in g(i, y)$ for $i = 1, 2, \cdots$ and $x_{ni} \neq x$ for all i. Since $\operatorname{clg}(i+1, y) \subset g(i, y)$, y is the only one cluster point of $\{x_{ni}\}$, it follows that $x_{ni} \to y$ so that there exists an m such that $x \neq g(n, \langle y; x_{ni} \rangle)$ if n > m. Take k > m. Then $x \neq g(m, x_k) \supset g(k, x_k)$, which is a contradiction. It follows that x is the unique cluster point of $\{x_n\}$. Since every subsequence of $\{x_n\}$ has a cluster point, $\{x_n\}$ converges to x. This completes the proof.

COROLLAYR 4. A regular space is developable iff it is a cs-semistratifiable $w\Delta$ -space. Proof. Note that any $w\Delta$ -space is a β -space and apply Theorem 3.

COROLLARY 5. A regular space is metrizable iff it is cs-semistratifiable wM-space Proof. Note that every wM-space is a β -space and apply Theorem 3 and (10, Corollary 5).

References

- 1. C.Borges, On metrizability of topoogical spaces, Can. J. Math. 20 (1968), 795-804.
- 2. D.Burke, On p-spaces and w\(Delta\)-spaces, Pac. J. Math. 35(1970), 285-296.
- 3. G.Creede, Concerning semistratifiable spaces, Pac. J. Math. 32(1970), 47-54.
- 4. R.E.Hodel, Moore spaces and w∆-spaces, Pac. J. Math. 38(1971), 641-652.
- 5. T.Ishii, On wM-spaces. I, Proc. Japan Acad. 46(1970), 6-10.
- 6. —, On wM-spaces, II, Proc. Japan Acad. 46(1970), 11-15.
- 7. H.Martin, Topological spaces in which compacta are uniformly Go (to appear).
- 8. T.Shiraki, On some metrization theorems (to appear).
- 9. P.Zenor, On spaces with regular Go-diagonals, Pac. J. Math. 40(1972), 759-763.
- 10. H.Martin, Metrizability of M-spaces, Canad. J.Math. 25(1973), 840-841.
- 11. J.Kelley, General Topology, Van Nostrand, 1955.