The Adsorption of Alkyl Aldehydes on Cations Supported by Layer Silicate. Complex Formation Theory

Layer Silicate에 지지된 양이온상에서의 알킬알데히드의 흡착기구. 착물형성 이론

  • Kim Jong Taik (Department of Applied Chemistry, Kyungpook National University) ;
  • Sohn Jong Rack (Department of Applied Chemistry, Kyungpook National University)
  • 김종택 (慶北大學校 工科大學 應用化學科) ;
  • 손종락 (慶北大學校 工科大學 應用化學科)
  • Published : 1974.06.30

Abstract

Adsorption mechanism of alkyl aldehydes, acetaldehyde, acrolein, and crotonaldehyde on cations supported by layer silicates was studied by means of IR spectroscopy and X-ray. An analysis of four characteristic split bands in the region of $1720∼1580㎝^{-1}$ was made. The carbonyl stretching band which shifted about $130㎝^{-1}$ to lower frequencies was observed only for $Ni^{2+}$ and Al^{3+}$ but slightly with $Ca^{2+}$ at high sample temperature and was attributed to >C=O…M complex formation. A sharp band which appeared as a shoulder at 1722 for acetaldehyde and 1690 for acrolein and crotonaldehyde was responsible for the interaction of carbonyl with surface hydroxyl. The second broad band which appeared at about 1710~1660 was responsible for hydrogen bonding between carbonyl oxygen and cationic hydroxyl group. The third band which appeared at about 1640~1660 was attributed to induced >C=C< double bond due to the strong carbonyl interaction. This was supported by the interlamellar spacings obtained by X-ray diffractometry.

Layer silicate 에 지지된 陽이온상에서의 일어난 acetaldehyde, acrolein, 그리고 crotonaldehyde의 吸着機構에 對하여 IR과 X-ray로서 硏究하였다. $1720∼1580㎝^{-1}$의 범위에서 일어난 4個의 특성적인 吸捉 band를 分析한 結果 $130㎝^{-1}$程度로 shift한 carbonyl band 는 >C=O${\cdots}$M형 complex 形成에 基因하는 것이었고, acetaldehyde는 $1722㎝^{-1}$에서, 다른 알데히드는 $1690㎝^{-1}$에서 sharp하게 나타난 carbonyl band는 >C=O와 surface -O-H와의 interaction에서 일어난 것이었다. 그리고 1710∼1660㎝-1에서 나타난 broad한 band는 >C=O와 陽이온 -O-H와의 사이에 일어난 水素結合에 依한 것이었다. 그리고 $1640∼1660㎝^{-1}$사이에 나타난 弱한 band는 carbonyl group 의 强한 吸着에 依하여 誤起된 >C=C< 二重結合에 依한 것이었다. 이 사실들은 X-ray 廻折에 依하여 다시 確認하였다.

Keywords

References

  1. J. Phys. Chem. v.72 W. Hertl;M. L. Hair
  2. J. Phys. Chem. v.70 G. Blyholder;L. D. Neff
  3. J. Korean Chem. Soc. v.17 J. T. Kim;J. R. Sohn
  4. J. Phys. Chem. v.77 K. Klier;J. H. Shen;A. C. Zettlemoyer
  5. J. Phys. Chem. v.74 M. L. Hair;W. Hertl
  6. J. Chem. Soc. G. Del Re
  7. J. Catal. v.20 R. P. Young;N. Sheppard
  8. J. Phys. Chem. v.70 G. Blyholder;L. D. Neff
  9. J. Amer. Chem. Soc. v.85 R. B. King
  10. J. Amer. Chem. Soc. v.86 R. J. Mawby;F. Basolo;R. G. Person
  11. Can. J. Chem. v.45 C. D. Cook;G. S. Jauhal
  12. Clay Mineralogy R. E. Grim
  13. J. Phys. Chem. v.77 D. M. Clementz;T. J. Pinnavaia;M. M. Mortland
  14. J. Phys. Chem. v.73 M. L. Hair;W. Hertl