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Transient Temperature Distribution, Thermal Stresses and Strains
in a Composite Cylinder with a Concentric Hole
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Nomenclature

E modulus of clasticity
h heat transfer coefficient
IRE3) Bessel function of the first kind, of order n
k thermal conductivity
q heat transfer rate
r radial distance
r, ts, 1., radii ¢f inner and outer cylinders
t tine
T, T,, T, temperature
w, T, W, radial, tangential, and axial displacement
Y. (x} Bessel function of the second kind, of
order n
@ thermal linear expansion coefficient
3 thermal diffusivity
€1y €5, s radial, tangential and axial strain
2; characteristic values
v Poisson’s ratio
,04,0. radial, tangential and axial stresses
[ stress function
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1. Introduction

The unequal temperature distribution in a conti-

nuous body will disturb the free expansion of the
clements and the thermal stresses are happened. The
problem of determining the thermal stress in an
clastic body due to a given temperature distribution
can be found at in

many practical applications

machine element design, such as in the design of
turbines, jet engines and nuclear reactors.

To the
prerequisite problem to be solved for the thermal
the

terms in the thermal stress equation could be put

determine temperature distribution is

It has been studied that tcmperature

stresses.
into the body force and surface force terms of the
ordinary equations of elasticity theory, whence the
gencral thermal stress problem can be included in

(8]

Material properties such as modulus of elasticity,

the conventional theory of elasticity.

thermal linear expansion coefficient are actually
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dependent upon temperature. Material properties at
elevated temperatures are yet remaining problems to
be determined except a few materials. It has been
studied that reliable solution can be obtained with
constant material properties under 500 *F temp-
erature difference for aluminum alloy 2024 T3[6],
for low carbon steel [4], and stainless steel. [5]

Generally, the analytic solution for thermal stress
can not be obtained if material properties are
arbitary functions of temperature except for special
cases. [2]

Lamé’s thick cylinder theory is often applied to
in a rein-

analyze the residual stress distribution

forced cylinder, considering the working pressure
and radial interference. But transient state of ther-
mal stress distribution can not be covered by La-
mé’s theory.

In the work reported here, analytic solution of
transient temperature distribution, thermal stresses
and strains in a composite cylinder with a con-
centric hole due to shrink fitting is analyzed with

constant material properties in plane strain problem.

2. Analysis of Problem

As a analytic model for temperature distribution,

thermal stresses and strains for the engineering

purpose, the following assumptions and simplifica-

tions are taken.
1) The material properties of both cylinders are
identical each other and isotropic.

2) Material properties are independent of tempe-
rature.

3) The inner surface of inner cylinder can be
regarded as insulated.

4) Temperature drop and resistance at the inter-
fering surface is disregarded.

5) Surface roughness at the interfering surface is
disregarded.

6) Propagation condition of the thermoelastic str-

ess and strain are not regarded.

2.1 Temperaiure Distribution

Considering a composite cylinder shown in Fig.1,
the governing equation for temperature 7 from

Fourier’s equation can be written as a dimensionless

ane for the convenience in the analysis.
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Then the equation governing ¢ becomes,

ZRETR GR T e

The outer cylinder is preheated uniformly so that

0,1 a8 o6 )

it just slips over the inner cylinder. Let the tem-

perature of outer cylinder T,, when the inner

radius of outer cylinder coincides with the outer
radius of inner cylinder as the outer cylinder cools

down, the boundary and initial conditions are,

1) at - =0 R, <R<R, 6=0 {(3)
R,<R<ZR, §==1
. %8
R =R =
2) 1 7 =0 (4)
3) R =R, ,;jf%_z—,ue (5)

The initial temperature distribution is shown in
Fig. 2,

i
E Ty
%
&
5
=1
To
ry ra 1‘3 r
~——* radial distance
Fiz. 2. Initial Temperature Distribution

Suppose that the solution of equation (2) has a
form as following,
(R, :)=F(R) X exp(—2%:) (6)
where 1 is a positive constant.
The solution of the Bessel function of order 0

becomes,
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FOR. == A () JoUR) +B(2) Yo(AR) 7

With the

following characteristic equation can be obtained.
SCIGRY YR —J (AR Y (R,

—u TR Yo UR) — T (2R:) Y (AR 1=0 (8)

Let #; be onc of the solutions of equation (8),

boundary conditions (4; and (5), the

corresponding to

) ] (9)

correspon-

then the solution of equation (7}
7; becomes,

Ty Al JolHR) Yo (4R)
FiRy= A [ R — G

The general solution of equation (23,

ding to boundary condition(4) and (5) are the lincar
combinations of I'(RY;x<exp(—2;2).
Hence

2 ar JeliR)
(P ;. 0' S
! 4{//){'71(/"‘1’1{!)

;1 ol% é) ]exp( —2%7)
(10)
Af4;) can be determined with the initial condition

(3), using the orthogonalities of I's.

= »_2 I I:f) Y (4R
Atk = {R[7_()R) Y (4R
_ R [ I (2 Ry) _Xﬁﬁl]]
IR B AT
S[[ R _ YR Y
(1‘31[./1 GRY Y ().,»/\’,A)J
B [r (Ry Yo (4R, x] }
LuR) T YIA4R
B R LS L1C SV i
R P - R ) (1)

The final temperaturc distribution is

- - r
R —
ra—1y

T(r) = To (T, - T T () T’_>

2.2 Thermal Siresses and Sirains

The stresses of a cylinder with radial temperature
variation across the cylinder wall constitute a com-
plicated two-dimensional problem even within the
range of elastic theory since the stress distribution
depends both on the axial and radial distance.

To simplify the problem to a one dimensional
one, two limiting cases may be considered. The
one is to assume that the cylinder is infinitely long
so that the strain is independent of axial distance

and the plane strain theory becomes valid. Especially

=1

if the cylinder has free ends, the so-called gener-
This
affords a good approximation of the stress distribu-

cylinder. The

alized plane strain theory can be applied.
tion in the central section of a long

other is to assume that the cylinder is infinitely

short or becomes virtually a thin disk, so that the
plane stress theory becomes valid. The stresses arc
assumed to be independent of axial distance. Above
two cases will be considered respectively.

2.2.1 Plane Strain Problem
stress-strain

The ordinary

must be modified for the strain is partly

relation in clasticity

due to

thermal expansion, partly due to stress. Shear

stresses and strains are zero on account of rotational
symmetry in an isotropic material. And the tempe-

rature distribution is a function of the radial

distance » onlv. Firstly plane strain problem i,e.
€,==0 will be analyzed and the results will be modified
with free end, ie.

for the solution of the case

€;=constant.
a. Inner cvlinder

The stress-strain relations in cvlindrical coordinate

are,
1 -
= o o )Tl T
‘0*[,;]\”‘? os) e (T — Ty (13

e;;i[g, o0 a (T T,

Since «,==0Q,
0= (0r04) —ad (T Tg) (14)

in making

the third of equation 13: gives

The stress function & can be obtained

use of the cquation of equilibrium and compati-

bilitv equation in rotational symmctry with no body
force.
i 4 L 1/‘1 Bv .=
.;‘:7*[ Trddr - "ty (15}
(1-:)rdn Z i

The stress components are,

“ (l—v)rf, 1
(14 )B
T Er

b. Outer cylinder
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For the outer cylinder lLas been prestrained on

account of

initial temperature, the stress-strain

relation will be modified as following.

=kl sl be)) 4 a(T- To) —a( T, - To)
cr=p (o0~ (ort0) I +alT—To) —a(T, = Ty)
z,:é[a,—u(u,—%a,)]—ka(T—— Ty —a(T,— T

an

By similar procedure with the case of inner

cylinder, the stresses and radial displacement are,

re<r<r,

ap=— (l_’)if Ta'r—l—‘;l Bz

5y= cr_Ey(~ T }—J‘ Trdr) Jf%“_.%t (18)

zrg_l__‘:)).j‘f Trdr+ 1D (2073, )rds
‘%lﬁz—-a(1>%/)rTl

Coustants ,, A, B,, and B, can be completely
determined by following boundary conditions.

Boundary conditions

1) External forces are not applied at the inner
surface of inner cylinder and outer surface of
outer cylinder,

2) At the interfering surface r =7, the radial
displacement and relative forces of two cylinders
are same,

From the above boundary conditions, and equation

(16), (18),
and B, are

the constants of integration A,, A, B,,
___aE
(1—») (s =11%)
3
[ZJ‘”T)‘dr — (3t =) (T, —Ty) ]

ak
(1) (rs*—rs®)

[~r [ Trar OS2I 7 - 7y

A=

B, =

E
Agem— 22
R VE YR
r3
(2 " Trdr+ G2 =r) (Ti- 9]
ah 2 2 . g N
B.= ml—m f1 Trdr—r*X

[P Trar—ori i =r (Ti=To ] (9)

Hence the stress components are,

Inner cylinder
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a,=£lf—[ l“j Trdr--~ e

1 (ra — 7y

f Trdr— 0210 02— rid) 2(7’2)@ —0 (7,-y |

— )r..

m=1aﬁ[ T——lf Trdr 177

—y (T”Z*rl)ﬁ)""

fT;dr b Zr ) ) (1, - 7y

Quter cylinder

2(rs?—rHrt
ay= 16”“’{ —LJ T1dr+ 1

(20)

rl

[J"ITrdr—;%—f’ITrdr—%J‘:Trdr]

| {rg* =) (ri—7rg") (TI—T,)]

-

2(7‘32-—7"‘)72
-5 { T+1f Trdri—t— ——
[faT, dr—l—r3 f Tldr+~-—f Trdr]
e el G O IO

Substituting equation (20) into equation (14), the

axial stress in the inner cylinder is,

. ok

2] 1_,,»[ ("3 71)f Trdr
/(r3 —7%) ¢
TS (T~ 10)] {22)

This is the axial stress which is applied to
keep the axial displacement tw zero throughout. In
the case of a long cylinder with unrestrained ends,
a valid approximate solution except near the ends
can be obtained by superposing simple tension or
compression so as to reduce the resultant force on

the ends, due to o, to zero. The resultant of axial

stress is,
2 o graEp(rP =) vd
J"g,.ZJd) _/[(7_3 ~71)J‘ Trdr
¢<7”z =7 ) (ry? -7 )
_f Trdr — < s (T ()
(23)
and the resultant of constant axial stress C, is

Ciriry®—r%). Hence the value of C, making the
{ 1 g

total axial force zero is given by

el o] B e

V(Ta — T
f Trdr +(__L7)(T,, To)] (24)

Therefore the axial stress for generalized plane

strain in inner cylinder is,

1aig v( -

0,=

) (25)



Vol. 11, No. 1, May, 1974
By similar procedure, the axial stress in outer
cylinder is,
a,:qah(‘* T- ——.2 f Trch) (26)
i—w Pl — /

The strain components are given by equation(13)
(17), (20), (21), (25) and (26).

Inner cylinder

.

(uhn) -

o )4 7")[(1*1’)7"2 ’1]
”Iul 20 _,12.)_;?_“.
(T,—To) |
_ (14ru) LA ()’
qu u[ [‘ Trdr (ra*—r,5)r®
f ’],(/,,,‘ )f Trdr

C(rf ) [/‘ — )i (14t

o o ., 2v
= = Trdr— 2=
St [erecl NG e

1l =) n
3 .2 .2
Trdr+2NE ) o7 T, 2
fﬂ s o>] (27)
=constant

Outer cylinder
—-¥*((; ) T— 1+Ljf Trdr- 7’(1 )X
2

)t
- # f“'l rdr
, v o g
(rg®—r)r i (rgz-r-\2 ]I Trdi
L= Hla—rt —(L“‘”)M] (T~ To)

2(rf—r)rt

—(1—) <1T1~Tu>]

e,zﬁ—{g-—?)f Trdr—

f “Trdr %[((:tj{r)l,“

[ (L‘r“)'l

(1T1J)7e‘

€ _”’1>

+E:—fl ]f Trdr

L >[(L—u>? —r(lﬁ L)T3J(T1__TO)

2(ryt—rrt

— Q=T = T

4+ r

=1 [ “2 . 'I)d; —o—f——X (28)
1-lrgs—ry” (r5®—7r%)

»o®

j Trdr —2(7;_7 12))]

=constant

2.2.2 Planc Stress Problem

39

In this case, the stresses are specified only by

o, and o,, and independent of axial distance, i.c,

5,0, The stress-strain relations are,

[ 1}‘ (0, 7L0"9)’:*(1('I"' ,[‘0>
(= Moy (T Ty (29)

By similar procedurc with the casc of plane strain
problem, the stress and strain components are deter-
mined.

Inner cylinder
ot

m:rd{ f Trdr-- T f Trdr

A )(7 —T)}

7(73 —71)
O - ’w 1 Aim‘
0,:(114[ f Trdr— (’ST;T—I Trdr
_ et =) P ) e
B e ) B

OQuter cylinder

_ ;%J"qTrdr—k’:,_,i rl{f:'[‘;-dr

'I)dsz ’Iul)
e Trdr)

(7" "1)(’“*'4)(’1‘1_,'['0)]

a,:(zl’:[

2(rt =)t

N l:‘i -+ f "2’1*,-(1,-~7-;7r3—2f .

J

€ ;a[lﬁ: Al L ;;’,),L: (1221514
T (A

U Trdr—

Quter cylinder
€r=a [(1+ )Jw Trdr
[ TR —Qi)rgt
732"7411[@ V)J Trdr —
e, _(1'“1',,'{)7"17‘“' ST
f}lfulr = J :frzlr]

(“ —r ) [( 1"17”‘(1 )’SJ(T Ty)

2’“ ("fTo)]] (32)

V) T\»(r}

4<T,~VTO>]
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G=u [(i;ilj‘::Trdr—}_rsz { r,"’[ 1—v) f:? Trdr

(1) ra® (7 Qv)r® e
—i—_—_r,z—J‘”Trdr—!— p= frETrer

+(732—r15) [(1 :u)‘r:ﬂ‘i2(1+>)r32](T1_ )

2(r —r)r
~(T,~Ty)) (33)
Comparing equation (20), (21) with the equation
(30) and (31), the radial and tangential stresses in
plane stress problem are(i—v) times those in plane

strain problem.

3. Numerical Results and Discussion

3.1 Input Data
Computation was performed for AISI 1040 carbon
steel which is generally used for crankshafts, axies
and connecting rods, using IBM 1130 in Seoul Na-

tional University.

Table 1.

a. Chemical Composition

Material Properties

AISL | ¢ | Mn P | s

C-1040 ‘ 0.37-0. 44| 0.60-0. 90‘ 0. 04max. l 0. 05max.

b. Material Properties

Modulus of elasticity I 3,0x107 1b/in®
Density ;u 489 1b/fe?
Specific heat Cp 30.111 Btu/lb-°F
Thermal conductivity & 31 Btu/hr-ft-*F
Thermal diffusivity 5 0.570 ft*/hr

Heat transfer

coefficient** h  4.83 Btu/hr-ft*-°F
Poisson’s ratio v 0.3
Thermal linear a  6,33x107° ft/ft-°F

expansion cocfficient
125, 000-98, 000 1b/in?
104, 000-60, 000 1b/in®

coefficient for radiation and

Tensile strength
Yield strength
** Heat

convection within 500 °F temperature difference

transfer

when the room temperature is 80°F.
¢. Dimensions

r = 3.0 inches

r = 3.5 inches

r = 4.0 inches

The initial inner radius of outer cylinder is made

a(T,—T,) less than the outer radius of inner cylin-
der.

Journal of SNAK

In case of low carbon steel, the wvariation of

material properties are not significant as shown in
Fig. 3, Fig. 4, and Fig. 5, if the range of working

temperature is within 500 “F.

x106
~ 40
=}
A
T30
lal —\
20k =~
N
u ~
10} N
\\
© 1 ! o\
0 500 1000 1500 2020
Temperature ( °F )
Fig. 3. Variation of Modulus of Elasticity
%
x10 10
oy
2
~ 5
&
1 L i)
0 500 1000 o 1500 2500

Temperature ( F )

Fig. 4 Variation of Thermal Linear Expansion

Coefficient
o‘T 30
-
- 018 4 C
= \[
E 20 ~—
"~

* ok

0 L 1 i

0 500 1600 1500 2000

Temperature ( °F )

Fig. 5. Variation of Thermal Conductivity

Chemical composition of steel for Fig. 8, Fig. 4
and Fig. 5 is C-0.20%, Mn-0.6%, P-0.011% and
S5-0.025%. (4]

In computation of the infinite series summation.
the first 30 terms are considered, for the rest do
not have significant order in engineering sence.
Stresses and strains are computed only in plane
strain problem, for the stresses in plane stress
problem are (1—v) times those in plane strain
problem. The values of temperature, stresses and
strains are computed at 0.1, 0.2, 0.5, 1.0, 2.0, 3.0,
5.0, 10.0, 30.0, 60.0, 90.0, 600.0,1800.0, and 3600.0

seconds after fitting.
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3.2 Temperature Disiribution
The transient temperature distribution is shown in
Fig. 6. The uniform temperature distribution is
achieved approximately 60 seconds after fitting. The
the uniform temperature is achieved

T,

Ti=To i that the
2

reason  why

at the higher tempcrature than

total heat capacity of the inner cylinder is sialler

than that of outer cylinder and the heat loss due to

convection and radiation effect is not significant.
S

P/ AL

=—0,013(T,— T,)*F/in

Fig. §. Temperature Distribution

The temperature gradient at the outer surface and
Biot's number calculated in equation(34) show that
internal conduction resistance is negligible in com-
parison with surface convection and radiation resi-
stance. Since no change of thermal stress is happened
after uniform temperature distribution is achieved,
for this problem the temperature distribution is
affected only by the conduction effect. Also the
assumption that the inner surfacc of inner cylinder
is insulated can be supposed not to have a significant
effect on the solution.

If the inner cylinder has no concentric hole, that

is ry=0, then R;==0, R;==1 in equation (i1). Thus

T =Tt (1= T & 7
i1
JoOn = T2 g 4 ’2_)
1{(4) Tamn 1( A;rg’“h XJo()-; ><_r_)
LN (@) S 3-To () )F Tam Ty

X

Xexp[ — it (35)

E -,’34 r
(ra—ry)? ]
where 4;’s are solutions of
A (2) = pJo (4) =0 (36)
If the temperature distribution of a single solid

cylinder is required, then ry=r,=0, that is Rj=R,

41
=0, Ry=1, Thus,
Ty =Tot(Ti= T 5
FE14
S N SN VR
- ['jl(xi)]2+[t]0(2i)]z/\( O(AJ 7"3*"1)
o P 8 an
xexp[ 2 (rg*rl)zt] (37)

3.3 Thermal Siresses and S rains

The transient thermal stress distributions are
shown in Fig. 7, Fig.8and Fig. 9. The radial stress
is always compressive throughout the cylinder and
has the maximum value at the interfering surface,
which contributes to the holding power of shrink-

fitting, at the interfering boundary in Fig. 7. The

tangential stress is compressive in inner cylinder
and tensile in outer cylinder, for the inner cylinder
is restrained from expansion and the outer cylinder
from contraction in Fig. 8, It is also shown in Fig.
8 that at the interfering boundary in inner cvlinder
cylinder, the magnitude of

and outer tangential

stress has almost the same value, though the tem-
peraturc decreases until the uniform distribution is
achieved. The maximum stress is produced at the

inner surface of the inner cylinder and outer

cylinder. The axial stress has the maximum value
at the interfering boundary immediately after fitting
zero when  the uniform

and decreases to almost

temperature distribution is achicved. Actually, it
has a negligible residual stress as shown in Fig. 9,
It takes about 60 seconds to achieve the residual
stresscs and uniform temperaturce distribution does
not change the stress distribution afterwards, even
though the temperature level is dropped.

The transient thermal strains are shown in Fig.
10 and Fig. 11. It is shown in Fig. 11 that the
inner cylinder is expanded and the outer cylinder
is contracted due to the heat transfer betwcen both
cylinder. The

at the intefering boundary where the large temper-

maximum radial strain is produced
ature variation is happened. The signs of tangential
strain in Fig. 11 in both cylinder are opposite to
those of radial strain respectively for the Poisson’s
effect. The axial strain is apparently constant in
generalized plane strain problem. The axial strainin
inner cylinder is (7T— T,) X4.8246x10% and in
(T,— T,) X2.1081x107% and these

outer cylinder

are not plottet.



42

160

- 140

a2

£ 120

]

~ 1004

B

" 8o
&0
40

~1008

~120

=140

-1

<0 3.1 3,2 3,3 24 U5

3,6 37 18 39

160

® 80
60

40

20

- 20
- W0

- 60

~100

~120

-t40 |

160

Fig. 7. Radial Stress

Distriaution

20 3.1 3,2 3.3 3.4 2

36 3p7 368 A9 4

Fig. 8. Tangential Stress Distribution

Journal of SNAK

140
-
(]
A 129~
AO
100
i
B s
]
&~ 0.1 sec
.2
0.
44 1.(5)
2.0
24 50
10.0
660

- &4

- 8¢

-104

120

-140

-160

o~

w

e

(T1 - To)x10

w

Fig. 10. Radial Strain

The results of the work reported here can be
applied to the problem of cylinders which are
subject to the additional inner pressure as gun firing
pressure with slight change of boundary conditions.
And the problem of steel tire under operation can

also be studied with adding the centrifugal forces
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Fiz. 11. Tangential Strain

in the compatibility equation.

If the inner cylinder has no concentric hole, cor-
esponding to the temperature distribution equation
(35), the constant B; in equation(15) must be zero
for the stresses are finite in the center of the inner
cylinder. The other three constants are determined

with the rest three boundary conditions.

The radial and tangential stresses, if the

inner
cylinder is solid, are as following,
Inner cvlinder
e alkl al
a, oy f Tidr+( f,)r3J‘ Trdr
all 7>
el g re® ~T
2(1_‘/)(1 s 7 >(T1 0)
. ;770115[' - ol Trdy all
SR o b v I veer o
_ak YL
j Trdr —7)( 732)(11
{38)

Outer cylinder

[f T:drmf "1m',]

o

—als

(Ty—"T4;

- 0,‘,1?,1,,47, afj)) [J Trdr— f 77dl]
T =

ald akr,® 1 1
Trdr+ 2 (_n-a——.\
(1—~,)r3f TR O r~>

AT =Ty (39)
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Temperature in equation (38) and (39) can be
found in equation (35).
3.4 Camparison of the Theoretical Results
and the Values from Lamé’s Formula

Lamé’s formulae of thick cylinder give the resi-

dual stresses from the relation between shrinking

pressure and radial interference in plane stress
problem.[10]
[nner cylinder
7 f.r 2 7 <
S B S
(ry? —r®)rs (ro*—r®)
B 7’12”22 rg'.l
i e ey ] (40)
TN G
Outer cylinder
oo P P T (41)
(rf=r2rt (rs*—r%)
where shrinking pressure is
P.— ik « (r, 775)(r —7r%) (42)
2,-23 ¥ ’-?‘_"
160 T
¢
1401 |
—— Theoretical '
120l Value
—-=-« lame's Formulae
"2" 100+ (Plain Strees) [~ ~——_ _
"5 eol. Tangential Stress
e
1
' ol
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%
Lo |- !
!
201 :
o a1 342 3:3 ph 38 3.8 3,7 358 s
- 20}
Radial Stress
-0l
- 60}
- 80 |- Tangential Stress
TV} NS
~120
~140 /
~160
Fig. 12. Comparison of Theoretical Residual

Stresses and the Stresses of Lame’s
Formulae
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and & is the radial tolerance between the outer

radius of inner cylinder and inner radius of outer
cylinder. The comparison of the theoretical value
of residual stresses in plane strain problem and the
value from Lamé’s formula is shown in Fig.12.
Fig. 12 shows a good coincidence of stress distribu-
theoretical

tion tendency but the magnitudes of

value is about 1.4 times that of Lamé&’s formulae,

for Lamé’s formulae are analyzed in plane stress

problem.

4. Conclusion

Analytical solutions for transient temperature

distribution, thermal stresses and strains in a
composite cylinder due to shrink fitting is obtained.
From the sample calculation, the following conclusion
can be derived.
1) Temperature distribution can be determined by
considering conduction effect only for low Biot’s
number.

2) The magnitude of tangential stress at the

interfering surface keeps almost same value
during the uniform temperature is achieved.
3) The maximum radial stress is produced at
intefering surface and tangential stress at the
inner surface of each cylinder.
4) The residual stress is achieved/ when the uni-
form temperature distribution is achieved.
Comparison of analytic solution and Lamé’s thick
cylinder theory in residual stresses shows accurate

coincidence,
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