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Abstract

The maximum principle of Pontryagin provides the celebrated method to obtain the optimum
control switching time and switching points on the nuclear reactor.

The control trajectories transfered from its initial state to the target state are optimized based on

time optioptimal control method with the given reactor parameters and the piecewise constant input

values.

1. Inireduction

The appearance of computer made possible the
application of the various techniques developed in
modern -control theory such as the maximum prin-
ciple” and dynamic programming®. In the light
of these possiblilities, it certainly is worthwhile
to study their applications in order to analyze,
synthesize and design the control systems in more
accurate and’ practical use. In this connection,
optimal control of a certain physical process has
many merits in economics and its pratical applica-
tions to complex systems. Concerning this minim-
ization control, the minimum time optimal is also
of primary importance in the reactor control
system due to the more efficient fuel management
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and minimum time requirement for reactor-start-up
or change in the power level.

The minimum time optimal introduced in this
paper for nuclear reactor is principally based on
the maximum principle of Pontryagin® and the
attempts are being made to use the computer to
perform the calculation of switching points and
its corresponding times as this control system is
so complex that more elaborate control and acc-
urate calculations are required.

In such cases, the maximum principle seems to
offer the useful techniques in synthesizing and
analyzing the complex multivariable system thr-
ough the state space approach.

2. Reactor kinetics

The general aspect of reactor kinetics, common to
all types of fission reators, is the mutual relations
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among the reactivity, neutron generation time
and delayed neutron®.

Reactivityp is the rate of neutron growth factor
% from unity. When the reactor is not very far
from critical in the point reactor model, % is used
in the neighborhood of unity.

The neutron generation time / is the mean time .

between neutron cycles for neutron reproduction
in multiplying assemblies.

In general, when % is limited to the near unity,
the difference between the neutron life time and
neutron generation time are treated to be negligible.

When the reactor is under the neighborhood of
the critical, in the regime where the neutron
chain reaction is not sufficiently sustained only
with the prompf neutroné, the delayed neutrons
are primarily dominant.

For the convenience of synthesis for the reactor
kinetics, taking the delayed neutrons into account
in the fission process, the rate of neutron popul-
ation change and the dayed neutrons can be easily
described in a set of the normalized form, accor-
ding to the small perturbation theory®

dn __o—8 B
it =7 rtpe 1) -
do . .
7:’1‘ —Ac @
for a single group model without loss in gene-
rality.® Where 0= k;l is reactivity, p=Zp5¢

the total delayed neutron fraction and Ac repres-
ents the population of precursors.

3. Time optimal control

Time optimal control is to control the nuclear
reactor system from its initial state to the desired
target state within the allowable minimum time.®

The magnitude of admissible control is, of cou-
rse, restricted as piecewise constant function. The n
the reactivity for the reactor kinetics is symmetr-
ically introduced in the manner of positive limits
or negative limits during the control process in
figure 1.

The optimal trajectory for the system is uniquely
determined on the phase plane without any phsical
constraint on the trajectories.

(e

Piecewise constant input fun ction
in reactivity

Figure 1.

The set of equations (1) and (2) is replaced in«
matrix form;

X=AX() 3)

It is then desired to transfer the system from

the initial state X(#,) to the target state X(if)

with the given reactivity restricted. Therefore,

the performance function for time optimal control.
is given as;

J=[" ar=t~t, @

where ¢, may be free and the reachable value-

of the reactivity is constrained as

ol =8 (5)
where & is a constant depending on. the delayed.
neutrons.

The additional state variable x, is then

Xo=Ilr—1o 6)
and the matrix with the added state variable is
replaced by

X=AX () @)
And the corresponding costate function for the-
adjoint system is defined by

P=—(XJTP(t) 8>
The inner product of these two equations is of
the form of Hamiltonian equation®;

H=({X - Py=xpo+(X - P) 9
The necessary condition for optimality is that P,.
=-—] and the zeroth term(x,, po) is superflous.
It can be written as;

H=(X-P)

:P_—lﬁ_ X1 D1+ ‘I‘B— X2 pr+ A% 1y — %2 s

where M is the maximum value.
This equation implies that the control must be-
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maximum value lain on the allowable boundary
of the closed set in order that Hamiltonian H
maintaing its maximum at

o=E&Bsgnp, (11)
This shows that A is maximum and its maximum
value is constant over the whole entire range of
the time {&(4, 2.

The corresponding canonical equations are;

. BH
X=—p =AX a2)
. oH
P=——y =—ATP a3
with boundary condition X(#), X(), P(f) and

£ (1). The solution of these canonical equations
are described in more detail in the appendix.

If the time ¢ is eliminated in the equation(A—9),
its solution on the phase plain is readily obtained by

_GnX1—Ci%a A‘l x buxr—buxz

P
N dzlxw—ﬂzzxzo ;

(GRS
Qg2 :(il_—@- *0-’1)-’«’10 + —e' X0

A =A%0— Ax20=bx

where a;,=2%,,—

A= p7ﬁ x10+-§;—x20:b22

bn:Rx]o_ (a2+ll)x20

bya 2(—&_7_‘8* —az\)xlo‘l‘#\xzo

This solution defined on the equation (14) for the
reactor kinetics, which reaches the target set
within the allowable minimum time is then the
optimal trajectory.

The equation(11) gives the switching condition
when the sign of p, is changed at the moment of
which p, meets zero but the initial vlaue of p,
cannot be negative while power is increasing.

Therefore, only one switching point is recorded
by the equation(i14),
eness of the optimal control as the value of p is

which brings out the uniqu-

on the upper bound of the control region so that
Hamiltonian must keep maximum constant.

The trajectories depicted by equation(i4) for the
several different reactivities and target values are
shown, x, versus x,, in the figure 2 which is
obtained by the analog computer.

The line S, whose slope is 45°, shows its target

state with zero reactivity. The trajectory a-c-e

J /az
bzlxlo—bzzxzo (14) )

on the phase plane.in figure 2 and on R, space in

figure 3 depicts the time optimal trajectory desired.

Figure 2. Time optimal trajectory, x, versus

%, with the several different initial
values and reactivities for U—235
(!=0.0001, 1=0.0784)
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Figure 3. Time optimal trajectory in three

dimension
The calculation of switching points according
to the several reactor parameters shown in the
table 1 and the several reactivities was found by

Table 1. Fuel nuclide and reactor parameters

Fuel nuclide 8 A I(sec)
Uzes 0.0065 (0.00748 0.001
yzss 0.0026 0.0559 0.001
Pu?e® 0.0021 0.686 0.001

the digital computer and theijr results are presented
in the table 2.
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Table 2. Switching points and switching time
Initial state(i.1),

Target state(g. 2)
Fuel [Reacti- | gyypoing | 5. | fiinel
nuclide dollars ! X | (sec) (sec)
s 0.2 2.4881% 1.9979] 36.162 - 0.1059
s 0.5 3.8939§ 1.9918] 9.4937 0.1341
Uss | 0.9 | 11.689 ; 1.9528 2.3857 0.1936
Tzss 0.2 2.4918 1.9986 21.562[ 0.0458
Tzs 0.5 3. 9253{ 1.9943 5.5809, 0.0568
28 0.9 |12.994 i 1.9623 1.2441f 0.0846
Puss | 0.2 | 2.4696 1.9949] 42.867 | 0.03353
Pu®® | 0.5 | 3.7424' 1.9800 12.014 0.3936
Puse 0.9 8.4256} 1.9220; 4. 1304! 0.5058

These switching points for the time optimal
control process are determined from equations (11)
and (14) according to the predetermined target
values of the output x;. This means that p,(¢) in
equation(A—11) changes monotonically with the
time and thus the switching of control occurs
at most once at the moment. of change of its
sign.

The initial value p,(to) of the adjoint system
satisfies the non-zero value and its terminal con-
dition, that is, transversality condition, is satisfied
at the terminal time ¢ by

(P(ts), X—X(t:))=0 (15)

That is, the vector of P,(¢) is perpendicular
to the tagent plane of X(#¢) and the value of p,
(¢;) must be zero in order to meet the transver-
sality condition. The zero value of p.(f;) gives
also p=0 at the terminal moment in equilibrium

state S in figure 2 as shown in figure 1.

4. Conclution

'Applying the maximum principle to the process
control of reactor kinetics, the exact optimal swi-
tching point, its switching time and its corres-
ponding time optimal trajectory transfering the
control system from the initial equilibrium state
to the target equilibrium state in the shortest
time are obtained by the digital computer.®

The time optimal trajectory a-c-e in figure 2 or
3 is decided only with . the reactivity without
concerning with the initial equilibrium state and

the switching points are independent on the initial
state, but dependent on the target state.

In power increase, the time 'optimal trajectory
converges towards the switching point with the
postitive reativity and switches to the power
shutdown trajectory with the negative reactivity
at the switching point.

The trajectory obtained from equation(i4) is
then the unique solution for the time optimal con-
trol, whose edge belongs to the boundary set of
control region.
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Appendix

1. Solution of state equation
For a piecewise constant of reactivity for rea-
ctor kinetics, the set of equations(12) and(13) is
replaced in the state matrix form;
X=AX (A-D
Where X and X are column matrix given by;

=(%)-(¢)
(A~2)
and A is a time unvariable constant square mat-
rix given by;

{_ﬂ;ﬂ_ L}

A=|"7" 1
1 2 (A-3)

To find the eigen values @, and a, of A, the
determinant of A—al is set to zero

{A—al|=0 (A—1)
which leads to
= PPV o= =D+ al2p (A5
21
wy= LBV~ Vo—B=T2pidllp_ (A—6)
2!

‘The transition matrix for this antomonous system
(A—1) is obtained according to the Sylvester’s
theorem.

B(t—ta) et

_ eal(t—lﬂ) { p_ﬂ_laz “B—
O, —0lp [ 1]
A —A—-a,
+ pa2(t—10) .0—-[3—-1011 _é
Ay—ay [ l }
A —=l-a, (A—7)

If the problem is to transfer the system from the
initial state X(%)=X, at time ¢, to the target
state X(¢,)=X, at time ¢, the solution of the
-equation(A—1]) is;

X =¢(@—1:) X (%) (A—8)

"to the original system,

That is,
[Xl]z o110 p_ﬁl_laz_ _?_ [}{10]
X)7 ay—a, 1 —i—a, Xao,

] — — —la ﬁ s
pomew LB B ()

24y L 2 —Z~a1 20

(A~9)
Hence the sign of the reactivity p must be alter-
native in. accordance with

the movement of
control rod so that it can give the suitable tra-
jectory.

2. Solution of adjoint system equation

Since the adjoint system is, in general, adjoint
its solution is similar to
the solution of the original system with time
reversed and thus the solution of costate function
to ‘the adjoint system is;

P()y=—9¢T({t—t) P (%) (A—10)
which is replaced as the form of
b evitt—to ﬁ"_ﬂl:l@_ -2 8
(1’2]: 1=V —B 1y, [‘b:ﬂ
l
ery [P
e I o
+ V2—0 ___ﬂ_ R—vz (PZJ
/
(A—11)

Where po and p, are the initial conditions of
the adjoint system and V, and V, are eigen values
defined by;
_ —(p—B—i)+ Jl(ﬁ——aﬂtl_ijm}i;'

2

vy
(A—12)
= (p—B—10)— J(p—B—=IN+4llp
21

V2

(A—13)
Hence the sign of p is also alternative in acco-

rdance with the motion of control. rod.



