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By U-Hang Ki and Jin Suk Pak 

Dedicated to Prol. A. Kaμlaguchi on his seνentieth bi1'thday 

~ O. Introduetion. 

Ishihara and one of the present authors [2] have studied properties of an almost 

product structure in a Riemannian manifold, and have proved a theorem on the 
characterization of product spaces of two spheres: 

THEOREM A. Let CM, g) be a comPlete and connected Rieηtanm'an manilold 01 
dimα'lSion m and let the1'e be given in CM, g) two compleηzenta1'y almost p1'oduct 

h ,.... •• • .... h 
structμ7es Pi mzd Qi sμch that 맑P i" = O. Assume that P t is 01 1'ank l' and 2르 

T드m-2. 11 the1'e is in CM, g) a non-constaχtjiμnction λ satis}ψ1Zg 

꽉 P/ "ï1t "ï1sÂ=-똥Pji’ 

where a and b are positive constants, then CM, g) is isomet서c with S'Ca)XSm-rCb) 

01' [S'Ca)XS’• 'Cb)]*, [S'Ca)XSm-rCb)] * being the lacto1' space s'Ca)XSm-'Cb)/N 

with Rieman껴'an met1'ic induced l 1'om that 01 s' Ca)XSm
- , Cb) by the þrojection. 

Recently, the present authors and Suh [4] defined the so-caIIed Cf,. g , U(k) , α(kj 
-structure which is naturally induced on a hypersurface of a manifold with 

Cf, g , μ， v, Â)-structure or on a submanifold of codimension 2 of an almost contact 

metric space. and studied a hypersurface of even-dimensionaI sphere in tenns of 

this structure by means of theorem A. 
n • • nn+1 The main purpose of this paper is studying a characterization of S"XS 

terms of ( J, g , μ(k) ， α(k))-structure by using of Theorem A. 

In S 1, we discuss intrinsic properties of SnXSn+1• In S 2, we find some 

properties of CJ, g. U(k) , a(k))-structure induced on SnXSn
+1 as a submanifold 

2n+3 of codimension 2 of C2n+3)-dimensionaI EucIidean space E~"T~ for Iater u 

S 3. we study complete Riemanni;l.ll manifolds ‘ admitting an ( 1, g , U (k) , α(k))-



‘ 
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structure which satisfies certain conditions. 

l=1xRn+I/4; 

where ab =a/axb, and denote by. Vc the operator of covariant differentiation with 

respect to 'the Christoffel symb이s 않 f formed with the metric tensor gcb' Then 

X b being tangent to S" +1 (폐 and M being the unit normal to S" + 1 (소}， 
we have equations of Gauss and those of Weingarten respectively in the forms 

(2.2) ‘ V~b=‘/효gc아f， VcM = -".1 2 X c' 

We next suppose that S"( 냉듀:) is covered by a system of c∞rdinate neighbor

l100ds {V; (X')} , where here and in the sequel the indices r, 5, t, … run over the 

range {n+2, ''', 2n+1}. Then the position vector Y of a point Q on S"(_설 

is also a functionof (XT) satisfying 

We now put 

Y.Y=웅. 

(1 .3) Ys=ÒsY' N=-‘/효Y， gts=Yt-Y5' 

where Òs=ò/òxs, and dl:lnote by Vt the operator of covariant differentiation with 

‘respect to the Christoffel symbols 7 
5 t 

Y s being tangent to Sn ~}? and N 

formed with the metric tensor g/s' Then 

be빼 빼t nOllnal to Sn(꿇 ), we have 

equations of Gauss and those of Weingarten respectively in the fornis 

‘ 

‘ -r 

‘ 



‘ 

(1. 4) 

fc Problems 0χ s"( ，1_A~ hsn+'(. ~，승1 
\‘/강/ \ι ~I 

'VtYs=‘/흥gtsN• 'VtN=-ý강Yt. 
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We now consider Sn (카 xsn+l켜一) and regard it as a submanifold of 

2n+3 codimension 2 in a (2n+3)-dimensional Euclidean space E~"T". Denoting by Z 
nl 1 \ .. n ,,+ll the position vector of a point of Sn( : n 1 xsn+l( )콕 J. 'we have 
lν/강J"~ \ 

(X(xa
) (1. 5) Z(i)=(A I.~ J) , 

Y(x r
) 

where here and in the sequel the indices h, i , j , … run over the range {1, 2, …, 
2n+3 ~nl 1 \ ,, +11 1 ‘ n, n+l, …, 2n+1}. Since Z.Z=X.X+Y.Y=l in E~"T"， S"{ :n )XsnT~{-:;느 l 

+2,,,, ~2η+.3 'a hypersurface of S~"~W(l) in E~'''v. 

~ 2. (f, g , U(찌， <<(k))-structure on sn( }n')XSn+l( /~ 
、/감/ μ/2 ). 

Let E2n+3 be a (2n+3)-dimensional Euclidean space with cartesian coordinates 

{l). (The indices IC, μ" 1), … run over the range {1, 2, …, 2n+3}). 

If we put 

(71}) =(0. …, 0, 1), 

0 
• ‘ • 

(강)= I ~ 
0 
1 

and JO ‘- /-1 .. O 
ι -~1--、. O t--’”--”」/--- ; 

1·0 -1 j--t- ; 

U ;l ” of 1o : 
1'-칸;;，;·-/ {)씨‘전‘ : 

... "'- ", .“L ? 
0 -- : - ----------;o 

then η.:t' 환 and ψZ are respectively l-form, vector 
2n+3 EW"-'V with the cartesian coordinates. 

Moreover, 

1 
1.. 0 

(Gμ.:t)= 
0 “ 1 

2n+3 is a positive definite Riemannian metric in Ew"r
v

• 

If we set 

and (1. l)-type tensor in 
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then 

φμx=φμ 1) G 1)À.’ 

ψμXψup GXP=Gμu-ημ TJ1)’ 

(GXP) = (Gx.o)-l, and GAμ 용μ =ηx 

힘헤=-ψ+η생· 

where 

and 

Â. .o.Â. 
Thus the aggregate (ψμ , ημ’ 용 .Gλμ) is an almost contact metric 
2n+3 

E~"T~ with cartesian coordinates. 

Moreover, denoting V.μ by the operator of covariant differentiation with respect to the 

Christoffel symbol {값 formed with Gμu， we find EF=o, fμηu=o and fμ꾀 
=0. Hence (ψμX， %, 얀 GÀ.μ) is a cosympletic structure. 

In this section, we want to derive the ct. g. U(k) , a(k))-structure induced on 

sn( ，1_.ìxsn싸운) as a submanifold of codimension 2 of E 2n+3with cosyr빼 

structure ín 

structure. 

Now, putting 

Zi=깐z， 

we see that 

'XL 
Z ‘ =1 -1. 

v \0 r 
0 

I _ 

-s \Y
S 

and the induced Riemannian metric gi of Gμλ has the form 

grh 。

(gj)=lo 
- , 

gts) 
‘ 

and hence 、

, 
’ 

e‘ 
t 

o 

g 

-m g 

0 
--U 1‘ g /

，
、

링i， gcl and gts being componen엽 of inverse matrÏCes of (gji)' (gcb) and (gt) 

respectively. 
Setting 

D= ’ 
-X(xa

) -
’ Y(xη 

l ’ 

we find Zi-C=O. Zi.D=O, C.C=D.D=l and C.D=O, wher~ the dot denotes the 
2η+3 

inner product reduced from GμÂ. in E~"T~. and consequently that C and D are 

r 
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unit normals to Sn(. ，~슨 xsη 
、‘/강‘ 

If we denote by V the induced connection on Sn( };:;-)XSn+1( } n) from the 
‘/강 ‘ 

connection f of E2fl +3 and denote by kji and kji components of the second 

fundamental tensors respectively with respect to unit nOImals C and D, equations. 

of Gauss are written as VjZi=까P+kjiD. 

Then 

(hji) = 
gcb O 

O 
• (k •• )= 

gtsr ';V \0 
gcb 0 

gts, ‘ 

and hence 

--
t 

o 

δ
 

f
ν
 

‘Av 

‘ 
nU 

I 
l --、

l
/

샤
ι
/
 

/
，
、

, ‘‘ 
t 

。

얘
 

lU 

δ
 

。

( --、
l
/

. ,, 
7J 

ι
κ
 

/
l‘
、

where hji=hihgjh and kjz=kjh g2k. 

From these relations we have 상=gji’ 따=-1 and 원힘=한· 
Also, taking account of the fact" that k/ has the form given by the above and 

the Christoffel" symb이s tj간 are all zero except c예 and t잇， denoting by 강 
components of the third fundamental tensor with respect to unit normals C and 
D, equations of Weingarten can be written as 

FjC= -친Zi+감D， 

FjD=-한Zi-cc. 

By the way, the third fundamental tensor 강 va띠shes because of the definition of 

C and equation of Weingarten, hence V;Z;=g.P+k;;D, VP= -Z, and V;D=-J-Z OJZ- ... JI-' "J- -J 

/ 

씬Zi· 
Finally, we consider transforms cpZi' ψC and ψD of Zi' C and D by φ 

respectively: 

(2.1) 

(2.2) 

(2.3) 

φZi=ffzh+%zC+깐D， 

ψC= -￡zi+αD， 

ψD=-상Zi-aC， 

where ft are components of a tensor field of type (1 , 1), 깐 and 깐 those of 
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l-forms and a a function of S"( }~ ì x S"+ 1( } ~~ -v' 2 J"~ \-V' 2 }’ 

given by u'=ujgfl and v'’=Ujg1t. 

If we write 

(2.4) ~=w' Zi+ßC+rD, 

then from (2. 1), (2.2), (2.3) and (2.4) we can easily see that Sγ」듯)x 

Sn+l(. ，~를 ) admits an (/, g , U야)， aCk))-structure (See (3)), that is, 

μ， and v' being respectively 

(2.5) 

(2.6) 
/ 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

h _ h 
fi wh=aui+β깐， 지 μ = -au --Rm , 

h Þh i h . h 
fi”Uh=rψi-a깐• li’‘u‘ =-rw"+au". 

h. h 
Itwh=-β깐-r깐• li ψ =ßμ +rv", 

2 _2 
x 깐=1-a--β , μUi=-βr， μtOi=αr. 

_ i _ 22i _ 
ν깐=--βr. v 깐=1-α -r , UWi=-aβ， 

i 1 - t ‘ .2 2 
wXi=αr， w 깐= -α， μ， zoi=1-β -r. 

1;센f.”g =g---μ.χ -v,v,-w !UJ, mn ~J' 'f" 'rz '" 

where zUi=gi1w1. 

Moreover, putting i=b in (2.1), we have Iba=O, ub+vb=O. 

Also, putting i=s in (2.1), we obtain 강=0， US-칸=0. 

Thus 

1; 0 

(깐)=(ub’ 
a 

r 
μ
 

μ
 

--、l 
l 

ι
 

L n 

μ
 

/ 
l 
\ 

、‘ 
j 

/ ·i x 
’ 

/ 

a ’ 

where zf=%bgba, ￡=μsgγand (깐)=(-μb’ Ws), (uh)=( -μr 
μ 

because the induced metric gji of G')，μ has the form 
‘ 



lntrinsic Problems on sn(꽃)xs…(꿇) 

'gba 0 

o g $i, 

한m파m-획mfjm=o. 
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on the other hand. applying the operator 'V of covariant differentiation to (2.1). 

(2.2). (2.3) and (2.4) and taking account of 과=0. 'Vη=0 and 야=0. we get 

Moreover. 

κκ=찬-akji’ 
FI꽉= -짝h지h+α'gji’ 
'V .tfJ .=βg--+rk .. , 

cft .• """ 

Fα=k .. 상-v，=-2v，. r' "J~"" -J -'J’ 

'V j3=-wj ’ 

F1r=-kj써， 

Pjpiμh=-gj썼+gjhUi-상vh+kjh깐+2kihvr 

+ (FjXi- Fi%j)μh+('Vj깐-'V센j)ph+(?jZUi-FiWj)wh 

=2Uj(민uh -aδih)-센(만h -a깐). 

S3. A eharaeterization of SnXSn+ l. 

1n this scction. we study complete Riemannian manifolds admitting (f. g. μ(k). 

aCk))-structures which satisfies some of differential equations obtained in the last 

part of S 2. 

We first prove 

THEOREM 1. Let M be a complete and connected n(> 2)-dz"ηzensional Riemannian 

mamfold M zνith metric tensor gji' and assume that there exist in M a symmetrù~ 

tensor field kji and a skew-symmetric tensor field f ji which satisfy 

(3.1) trace(한)=constant. 
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(3.2) 

(3.3) 

(3.4) 

U-Hang Ki and Jin Suk Pak 

-(n-2)ιX흐trace(씬)드(n-2)νx 

'Vk상·「 F1kki=0, 

진mkf=Agji’ 
A being a differentiable function, aηd there exists a non-t서'vial d짜"erentiable 

function a sμch that 

(3.5) Fjpia=2%지
m_ 2αgμ， 

where kj=kjmg1m a%d 강=져m￡m. 

Then, M is global，ψ isomet서c to sn(옳 or sP 끓， xS써수 I or 

sÞ( ，~되xsn-p( },., ìl용， (2<p<n-2), SP( } ... ) being p-dimensional ψhere with \ 2" JJ ' \.~ -1' - \‘/강/ 

7adius 꿇. 

PROOF. Differentiating (3.4) covariantly, we find ‘ 

(3.6) ('Vk전m)kt +kjm('V kkim)=( 'V 0)gji’ 

from which, contracting j and i and using (3.3), 2kji( 'V kkJt
) = (2n+ 1)밀A. 

Ifv.ιe contract again k and i in (3.6) and use (3. 1) and (3.2), (3.6) can be 

written as 

kim(인kt

’n)= 'VjA. 

From the last two equations we have A=constant. 

If A=O, then we have from (3.4), kji=O. 

Thus (3.5) becomes 'Vj인α=-(‘/강)2agji· 

'Since M is complete, by the theorem of Obata, M is isometric to a sphere 

s2n+1(-L 
. ../ 2 J' 

:Since A is a constant, we consider only A~O. 
We have from (3.5), 

(3. η kjmft-한mfjm=O. 
Putting 

(3.8) P/，=쉰진'+ ;강.; J’ 

.we have from (3.4), (3.5) and (3.7) 

(3.9) 

’ 

χ 

r 
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using (3.4) and (3.6), 

PJPlz낀Ftα=-2αPkl 

fromwhich, 

(3.10) 

QilQlh=Qf PiIQlh=0, 1 ~h ~h 
then we can see that P/Pi'=Pi ’ 

wefind 

If we put Qf=δzh-Pzh， 
by virtue of (3.8). 

Using (3.3) and A=constant, 
‘ 

pkpth-FiPZ=o, 

such that structures product 

[2] ). 

almost conplementary 

from which, vkPt=O (See Lemmal.l in 

Thus P i
h and 따 aretwo 

V~:샌=0. 

from (3.5) and (3.9), we get 

Q/Vj V/X= (õ/ - p/)Vj Via 

Moreover, 

、

찌
 

Q
‘ α

 

n~
‘ 

·= m 

α
z
 

떠
 P1 

-m 

·
찌
 

a 

Q
” 

밍
 

qu 
f
、鋼

from which, 

we find 2르rank: (Pih)드n-2. There-

the conseq uently and satisfied all 

On the other hand, from (3.2) and (3.8), 

fore, the assumptions of Theorem A 

conclusions of Theorem A are valid. 

are 

We next prove 

(2n+ l)-dimensional 

such that α2+i' 
complete 

differentiable manifold M admits an (f, g , U(k) , α(k))-strμctμre 

+r2:;é 1, a낯0， β:;é 0 and r :;éO almost everyμIhere， and 

(3.11) V1α=-2깐， V꺼=-씨· 

1f there exists a te:κsor field kji of type (0, 2) which satis!ies 

Fj씬=지z-α싼， 

connected and a that THEOREM 2. Assume 

(3.12) 

and 

the Riemannian mefric 

VkVj깐=-g씬i+g쳐%j-k힘깐+kki낌+2kjiVk， 

Levi-Civita connection indμced !rom the denotes 

(3.13) 

F μIhere 

* × SnLL sn+1f」
‘/강 

or ×snf-L n+l( 1 
tensor gji' Then M is isometric to S"'"\j\ 

PROOF. We have from (3.12) 
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Fj한+FiXj= -2ajeji’ 

from which. differentiating covariantly and substituting (3. 11) and (3. 13). 

aV잃=0. Since a is almost everywhere non-zero in M. we have V찌‘i=0. 

If we differentiate covariantly and take account of (3.11). (3. 13) and V생ji= 

0, we see that 

(3.14) Vk자i=-g힘싼+g짧j-k씬+k웹· 

On the other hand, we have from (3. 12) 

pj싼-V싼=2감， 

from which. transvecting u' and substituting (2.6) and (2.9) 

xiPjXi=울와(1-α2-β2)_2(αVi+β딴). 

from which. using (3.11) 

(3.15) 써P:i깐=-β띤· 

Transvecting (3. 12) with u' and using (2.6) and (3.15). we obtain 

(3.16) kjiμZ=-깐 

because α is almost everywhere non-zero. 

Differentiating (3.16) covariantly and taking account of V야ji=O and (3.12), 

we have 

(3.17) -PKPj=kj까fk
m

-αkjm함. 

From the first equation of (3. 11) we see that 

Vlk-Vk깐=0. Thus (3.17) implies that 

(3.18) kjmf겁-k뻐져m=o. 

Transvecting 상 to (3. 18) and using (2.6). (2.7) and (3.16), we get 

(3.19) akjmνηt= -gkjmμ，m+rWj-αXj· 
ik Transvecting again (3.18) with fJ" and making use of (2.5) and the skew-

symmetry of f1k, we find 

(3.20) 
j i j 

짧‘=한i% X +kjiP Zl +kjzW % 
• 

Differentiating (3.18) covariantly and substituting (3.14). we obtain 

kjm(-gkμm+ak7a한-k힘vm+k겁ν'i) 

=kim(-g상μm+ò섭Xj-%νη+kkm깐) 

by virtue of V;jj=O. or, using (3.16) 

‘ 

j 

/ 



、
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(3.21) gki앙+kjkUi- (kjmv
m

) 싫i+(kj，，/l섣)Vi 

=g씹i+kik션-(한mvm)kkj+(한mk섣)씬· 
Differentiating the second equation of (2.9) covariantly. we find 

("ïA상)V'+μi(Fj깐)=-('V연)r-βFjr， 

from which. substituting (3. 11). (3. 12) and (3. 17). 

βPjr=r%j- (f1z -α한)반Ut(획mfjm-αkimkf)， 

or. using (2.7) and (3. 16). 

(3.22) βF1r=2α한mUm+2α씬-r낀· 
Differentiating the first equation of (2.7) covariantly. we find 

(인상싸+앙(끽vh) = (Vl)씬+rV/wi-(Vp)깐-α까한’ 
from which. taking skew-symmetric parts. 

=(Fjr)싼-(Vir)wr(Vp)깐+(민α)Wj-a(?1싼-FiWj)， 

or. using (3.11). (3.12). (3.14) and (3.17), 

(3.23) -(킹깐-ViUj)+(웰vm)깐-(윈mvm)깐+2αfihkh’}t 
= (Vjr)싸-(민.r)써-2αj뇌· 
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Transvecting (3.23) with u' and making use of (2.6). (2.7). (2.9). (2. 10) and 

(3. 16). we have 

(3.24) (r2-β2)깐+βr(kt;νm)+2αr ki써O 

=(μm'V mr)wi-αrVir-βr 깐+2αßwi， 
from which. using (3.19). 

β(r2 _β2)깐+β2r(한m싸)+2αr(-α한mUm+rμ’i-α깐) 

=β(μmp%r)2‘’i-αgrVir-/32r깐+2αg2%i· 

Since βttmpmr= -2αi+al. from (3.16) and (3.22). the above equation becomes 

...2,.. m.... ....2 ..... , "",2 2 R‘ r(kimz, ) = -β r씬+β(ß" -r")vi• and consequently 

(3.25) kimv’”= -깐+((i-r2)1.βr)깐· 
Substituting (3.25) into (3.21). (3.21) becomes 



/ 
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(3.26) 깐 {gki-((β2-r장/β'r)앓-kkmkf} =깐 {g힘 -((β2-r2)/βr)kkj-k싫f} . 
Using (3.25), we also find 

um [gkm-((32-r2)/β'r)kkm -휠짧] = -2((β2-r2)/βr){- χk+((i-/)/.βr)갱 · 

Transvecting (3.26) with v' and using the above equation, we get 

(3.27) O= (1-a2- r2) {앓-((β2_l)!βr)kki-kkm앙} 

+2((β2_/)/βr){-v싼k + ((ß2 _r2)1.βr)깐Vk}. 
from which 0=((β，2_/)/.β'r)(vkUi-V싼~， and consequently 

'(3.28) β2-r2=α 

Thus, using (3.27) and (3.28), 

(3.29) 한"，kt=황· 
Also, from (3. 19), (3.25) and (3.28), we have 

(3.30) 힌mνm=-%， k1m%m= 줍꺼:. 

Moreover, from (3.11) and (3.17) , 

(3.31) VkVp = 2kkm지m-2αgkj’ 
and, using (2.9), (2.11) , (3. 16), (3.20) and (3.30). 

(3.32) kmx=끊=:t 1 

by virtue of (3. 28). 

Since the manifold is connected, k따=1 야 k강= -1 on the whole space. Thus 

the equations (3.29), (3.31), (3.32), V얘fi=O and Theorem 1 prove the theorem. 

Kyungpook University 
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