$$
\text { INTRINSIC PROBLEMS ON } S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n+1}\left(\frac{1}{\sqrt{2}}\right)
$$

By U-Hang Ki and Jin Suk Pak

Dedicated to Prof. A. Kawaguchi on his seventieth birthday

§ 0. Introduction.

Ishihara and one of the present authors [2] have studied properties of an almost product structure in a Riemannian manifold, and have proved a theorem on the characterization of product spaces of two spheres:

THEOREM A. Let (M, g) be a complete and connected Riemannian manifold of dimension m and let there be given in (M, g) two complementary almost product structures $P_{i}{ }^{h}$ and $Q_{i}{ }^{h}$ such that $\nabla_{k} P_{i}{ }^{h}=0$. Assume that $P_{i}{ }^{h}$ is of rank r and $2 \leq$ $r \leq m-2$. If there is in (M, g) a non-constant function λ satisfying

$$
\begin{aligned}
& P_{j}^{t} P_{i}^{s} \nabla_{t} \nabla_{s} \lambda=-\frac{\lambda}{a^{2}} P_{j i}, \\
& Q_{j}^{t} Q_{i}^{s} \nabla_{t} \nabla_{s} \lambda=-\frac{\lambda}{b^{2}} Q_{j i},
\end{aligned}
$$

where a and b are positive constants, then (M, g) is isometric with $S^{r}(a) \times S^{m-r}(b)$ or $\left[S^{r}(a) \times S^{m-r}(b)\right]^{*},\left[S^{r}(a) \times S^{m-r}(b)\right]^{*}$ being the factor space $S^{r}(a) \times S^{m-r}(b) / \sim$ with Riemannian metric induced from that of $S^{r}(a) \times S^{m-r}(b)$ by the projection.

Recently, the present authors and Suh [4] defined the so-called ($f_{,}, g, u_{(k), \alpha(k)}$) -structure which is naturally induced on a hypersurface of a manifold with (f, g, u, v, λ)-structure or on a submanifold of codimension 2 of an almost contact metric space, and studied a hypersurface of even-dimensional sphere in terms of this structure by means of theorem A.
The main purpose of this paper is studying a characterization of $S^{n} \times S^{n+1}$ in terms of ($f, g, u(k), \alpha(k)$)-structure by using of Theorem A.
In §1, we discuss intrinsic properties of $S^{n} \times S^{n+1}$. In $\S 2$, we find some properties of ($f, g, u(k), \alpha(k)$)-structure induced on $S^{n} \times S^{n+1}$ as a submanifold of codimension 2 of ($2 n+3$)-dimensional Euclidean space $E^{2 n+3}$. for later use, In $\S 3$, we study complete Riemannian manifolds admitting an ($f, g, u(k), \alpha(k)$)-
structure which satisfies certain conditions.
§1. $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$ as a submanifold of codimension 2 of $E^{2 n+3}$.
Let E^{n+2} be an ($n+2$)-dimensional Euclidean space and 0 the origin of a cartesian coordinate system in E^{n+2} and denote by X the position vector of a point P in E^{n+2} with respect to the origin 0.
We consider a sphere $S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$ with the center at 0 and with radius $\frac{1}{\sqrt{2}}$, and suppose that $S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$ is covered by a system of coordinate neighborhoods $\left\{U: x^{a}\right\}$, where here and in the sequel the indices $a, b, c \cdots$ run over the range $\{1,2, \cdots, n+1\}$. Then the position vector X of a point P on $S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$ is a function of $\left(x^{a}\right)$ satisfying $X \cdot X=\frac{1}{2}$, where the dot denotes the inner product of two vectors in a Euclidean space.

Now we put

$$
\begin{equation*}
X_{b}=\partial_{b} X, \quad M=-\sqrt{2} X, g_{c b}=X_{c} \cdot X_{b}, \tag{1.1}
\end{equation*}
$$

where $\partial_{b}=\partial / \partial x^{b}$, and denote by ∇_{c} the operator of covariant differentiation with respect to the Christoffel symbols $\left\{\begin{array}{l}a \\ c b\end{array}\right\}$ formed with the metric tensor $g_{c b}$. Then X_{b} being tangent to $S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$ and M being the unit normal to $S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$, we have equations of Gauss and those of Weingarten respectively in the forms

$$
\begin{equation*}
\nabla_{c} X_{b}=\sqrt{2} g_{c b} M, \quad \nabla_{c} M=-\sqrt{2} X_{c} . \tag{2.2}
\end{equation*}
$$

We next suppose that $S^{n}\left(\frac{1}{\sqrt{2}}\right)$ is covered by a system of coordinate neighborhoods $\left\{V:\left(x^{r}\right)\right\}$, where here and in the sequel the indices r, s, t, \cdots run over the range $\{n+2, \cdots, 2 n+1\}$. Then the position vector Y of a point Q on $S^{n}\left(\frac{1}{\sqrt{2}}\right)$ is also a function of $\left(x^{r}\right)$ satisfying $Y \cdot Y=\frac{1}{2}$.

We now put

$$
\begin{equation*}
Y_{s}=\partial_{s} Y, \quad N=-\sqrt{2} Y, g_{t s}=Y_{t} \cdot Y_{s}, \tag{1.3}
\end{equation*}
$$

where $\partial_{s}=\partial / \partial x^{s}$, and denote by ∇_{t} the operator of covariant differentiation with respect to the Christoffel symbols $\left\{\begin{array}{c}r \\ s\end{array} t\right.$ formed with the metric tensor $g_{t s}$. Then Y_{s} being tangent to $S^{n}\left(\frac{1}{\sqrt{2}}\right)$ and N being unit normal to $S^{n}\left(\frac{1}{\sqrt{\overline{2}}}\right)$, we have equations of Gauss and those of Weingarten respectively in the forms

$$
\begin{equation*}
\nabla_{t} Y_{s}=\sqrt{ } \overline{2} g_{t s} N, \nabla_{t} N=-\sqrt{2} Y_{t} . \tag{1.4}
\end{equation*}
$$

We now consider $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$ and regard it as a submanifold of codimension 2 in a ($2 n+3$)-dimensional Euclidean space $E^{2 n+3}$. Denoting by Z the position vector of a point of $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$, we have

$$
\begin{equation*}
Z\left(x^{h}\right)=\binom{X\left(x^{a}\right)}{Y\left(x^{r}\right)} \tag{1.5}
\end{equation*}
$$

where here and in the sequel the indices h, i, j, \cdots run over the range $\{1,2, \cdots$, $n, n+1, \cdots, 2 n+1\}$. Since $Z \cdot Z=X \cdot X+Y \cdot Y=1$ in $E^{2 n+3}, S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$ is a hypersurface of $S^{2 n+2}(1)$ in $E^{2 n+3}$.
§ 2. (f, $g, u(k), \alpha(k))$-structure on $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$.
Let $E^{2 n+3}$ be a ($2 n+3$)-dimensional Euclidean space with cartesian coordinates $\left\{y^{\kappa}\right\}$. (The indices κ, μ, ν, \cdots run over the range $\{1,2, \cdots, 2 n+3\}$). If we put

$$
\begin{aligned}
& \left(\eta_{\lambda}\right)=(0, \cdots, 0,1), \\
& \left(\xi^{\lambda}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
\vdots \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

and

then $\eta_{\lambda}, \xi^{\lambda}$ and φ_{μ}^{λ} are respectively 1 -form, vector and (1,1)-type tensor in $E^{2 n+3}$ with the cartesian coordinates.
Moreover,

$$
\left(G_{\mu \lambda}\right)=\left(\begin{array}{llll}
1 & & & \\
& 1 & & 0 \\
& & 0 & \\
0 & & \ddots & \\
0 & & & 1
\end{array}\right)
$$

is a positive definite Riemannian metric in $E^{2 n+3}$.
If we set

$$
\varphi_{\mu \lambda}=\varphi_{\mu}{ }^{\nu} G_{\nu \lambda}
$$

then

$$
\varphi_{\mu \lambda} \varphi_{\nu \rho} G^{\lambda \rho}=G_{\mu \nu}-\eta_{\mu} \eta_{\nu}
$$

where

$$
\left(G^{\lambda \rho}\right)=\left(G_{\lambda \rho}\right)^{-1}, \text { and } G_{\lambda \mu} \xi^{\mu}=\eta_{\lambda}
$$

and

$$
\varphi_{\mu}^{\lambda} \varphi_{\lambda}^{\nu}=-\delta_{\mu}^{\nu}+\eta_{\mu} \xi^{\nu}
$$

Thus the aggregate ($\varphi_{\mu}^{\lambda}, \eta_{\mu}, \xi^{\lambda}, G_{\lambda \mu}$) is an almost contact metric structure in $E^{2 n+3}$ with cartesian coordinates.
Moreover, denoting $\widetilde{\nabla}_{\mu}$ by the operator of covariant differentiation with respect to the Christoffel symbol $\left\{\begin{array}{l}\lambda \\ \mu \nu\end{array}\right\}$ formed with $G_{\mu \nu}$, we find $\tilde{\nabla}_{\mu} \xi^{\nu}=0, \tilde{\nabla}_{\mu} \eta^{\nu}=0$ and $\tilde{\nabla}_{\mu} \varphi_{\lambda}{ }^{\nu}$ $=0$. Hence ($\varphi_{\mu}^{\lambda}, \eta_{\mu}, \xi^{\lambda}, G_{\lambda \mu}$) is a cosympletic structure.
In this section, we want to derive the ($f, g, u(k), \alpha(k)$)-structure induced on $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$ as a submanifold of codimension 2 of $E^{2 n+3}$ with cosympletic structure.

Now, putting

$$
Z_{i}=\partial_{i} Z
$$

we see that

$$
Z_{b}=\binom{X_{b}}{0}, \quad Z_{s}=\binom{0}{Y_{s}}
$$

and the induced Riemannian metric $g_{j i}$ of $G_{\mu \lambda}$ has the form

$$
\left(g_{j i}\right)=\left(\begin{array}{cc}
g_{c b} & 0 \\
0 & g_{t s}
\end{array}\right)
$$

and hence

$$
\left(g^{j i}\right)=\left(\begin{array}{ll}
g^{c b} & 0 \\
0 & g^{t s}
\end{array}\right)
$$

$g^{j i}, g^{c b}$ and $g^{t s}$ being components of inverse matrices of $\left(g_{j i}\right),\left(g_{c b}\right)$ and $\left(g_{t s}\right)$ respectively.

Setting

$$
C=\binom{-X\left(x^{a}\right)}{-Y\left(x^{r}\right)}, \quad D=\binom{-X\left(x^{a}\right)}{Y\left(x^{r}\right)}
$$

we find $Z_{i} \cdot C=0, Z_{i} \cdot D=0, C \cdot C=D \cdot D=1$ and $C \cdot D=0$, where the dot denotes the inner product reduced from $G_{\mu \lambda}$ in $E^{2 n+3}$, and consequently that C and D are
unit normals to $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$.
If we denote by ∇ the induced connection on $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$ from the connection $\tilde{\nabla}$ of $E^{2 n+3}$ and denote by $h_{j i}$ and $k_{j i}$ components of the second fundamental tensors respectively with respect to unit normals C and D, equations of Gauss are written as $\nabla_{j} Z_{i}=h_{j i} C+k_{j i} D$.

Then

$$
\left(h_{j i}\right)=\left(\begin{array}{ll}
g_{c b} & 0 \\
0 & g_{t s}
\end{array}\right), \quad\left(k_{j i}\right)=\left(\begin{array}{ll}
g_{c b} & 0 \\
0 & -g_{t s}
\end{array}\right)
$$

and hence

$$
\left(h_{j}^{i}\right)=\left(\begin{array}{ll}
\delta_{b}^{c} & 0 \\
0 & \delta_{t}^{s}
\end{array}\right), \quad\left(k_{j}^{i}\right)=\left(\begin{array}{cc}
\delta_{c}^{b} & 0 \\
0 & -\delta_{t}^{s}
\end{array}\right)
$$

where $h_{j}^{i}=h_{i} h g^{j h}$ and $k_{j}^{i}=k_{j h} g^{i h}$.
From these relations we have $h_{j i}=g_{j i}, k_{h}^{h}=-1$ and $k_{j}^{m} k_{m}^{h}=\delta_{j}^{h}$.
Also, taking account of the fact that k_{j}^{i} has the form given by the above and the Christoffel symbols $\left\{\begin{array}{c}h \\ j \\ i\end{array}\right\}$ are all zero except $\left\{\begin{array}{c}a \\ c\end{array}\right\}$ b and $\left\{\begin{array}{c}r \\ t^{r}\end{array}\right\}$, denoting by l_{j} components of the third fundamental tensor with respect to unit normals C and D, equations of Weingarten can be written as

$$
\begin{aligned}
& \nabla_{j} C=-h_{j}^{i} Z_{i}+l_{j} D \\
& \nabla_{j} D=-k_{j}^{i} Z_{i}-l_{j} C
\end{aligned}
$$

By the way, the third fundamental tensor l_{j} vanishes because of the definition of C and equation of Weingarten, hence $\nabla_{j} Z_{i}=g_{j i} C+k_{j i} D, \nabla_{j} C=-Z_{j}$ and $\nabla_{j} D=-$ $k_{j}^{i} Z_{i}$.

Finally, we consider transforms $\varphi Z_{i}, \varphi C$ and φD of Z_{i}, C and D by φ respectively:

$$
\begin{align*}
& \varphi Z_{i}=f_{i}^{h} Z_{h}+u_{i} C+v_{i} D, \tag{2.1}\\
& \varphi C=-u^{i} Z_{i}+\alpha D, \tag{2.2}\\
& \varphi D=-v^{i} Z_{i}-\alpha C, \tag{2.3}
\end{align*}
$$

where f_{i}^{h} are components of a tensor field of type $(1,1), u_{i}$ and v_{i} those of

1-forms and α a function of $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n+1}\left(\frac{1}{\sqrt{2}}\right), u^{i}$ and v^{i} being respectively given by $u^{i}=u_{j} g^{j i}$ and $v^{i}=v_{j} g^{j i}$.

If we write

$$
\begin{equation*}
\xi=w^{i} Z_{i}+\beta C+\gamma D \tag{2.4}
\end{equation*}
$$

then from (2.1), (2.2), (2.3) and (2.4) we can easily see that $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times$ $S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$ admits an $(f, g, u(k), \alpha(k))$-structure (See (3]), that is,

$$
\begin{equation*}
f_{i}^{h} u_{h}=\alpha v_{i}+\beta w_{i}, f_{i}^{h} u^{i}=-\alpha v^{h}-\beta w^{h}, \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
f_{j}^{k} f_{k}^{i}=-\delta_{j}^{i}+u_{j} u^{i}+v_{j} v^{i}+w_{j} w^{i}, \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
f_{i}^{h} v_{h}=\gamma w_{i}-\alpha u_{i}, f_{i}^{h} v^{i}=-\gamma w^{h}+\alpha u^{h} \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
f_{i}^{h} w_{h}=-\beta u_{i}-\gamma v_{i}, f_{i}^{h} w^{i}=\beta u^{h}+\gamma v^{h}, \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
u^{i} u_{i}=1-\alpha^{2}-\beta^{2}, u^{i} v_{i}=-\beta r, u^{i} w_{i}=\alpha r, \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
v^{i} u_{i}=-\beta \gamma, v^{i} v_{i}=1-\alpha^{2}-\gamma^{2}, v^{i} w_{i}=-\alpha \beta, \tag{2.10}
\end{equation*}
$$

where $w_{i}=g_{i j} w^{j}$.
Moreover, putting $i=b$ in (2.1), we have $f_{b}^{a}=0, u_{b}+v_{b}=0$.
Also, putting $i=s$ in (2.1), we obtain $f_{t}^{s}=0, u_{s}-v_{s}=0$.
Thus

$$
\begin{aligned}
& \left(f_{i}^{h}\right)=\left(\begin{array}{cc}
0 & f_{s}^{a} \\
f_{b}^{r} & 0
\end{array}\right), \\
& \left(u_{i}\right)=\left(u_{b}, u_{s}\right),\left(u^{h}\right)=\binom{u^{a}}{u^{r}},
\end{aligned}
$$

where $u^{a}=u_{b} g^{b a}, u^{r}=u_{s} g^{s r}$ and $\left(v_{i}\right)=\left(-u_{b}, u_{s}\right),\left(v^{b}\right)=\binom{-u^{a}}{u^{r}}$
because the induced metric $g_{j i}$ of $G_{\lambda \mu}$ has the form

$$
\left(\begin{array}{ll}
g_{b a} & 0 \\
0 & g_{s t}
\end{array}\right)
$$

Thus $k_{j}^{h} u^{j}=-v^{h}, k_{j}^{h} v^{j}=-u^{h}$, and moreover, $k_{j m} f_{i}^{m}-k_{i m} f_{j}^{m}=0$.
On the other hand, applying the operator ∇ of covariant differentiation to (2.1), (2.2), (2.3) and (2.4) and taking account of $\tilde{\nabla} \varphi=0, \tilde{\nabla} \eta=0$ and $\widetilde{\nabla} \xi=0$, we get

$$
\begin{aligned}
& \nabla_{j} f_{i}^{h}=-g_{j i} u^{h}-k_{j i} v^{h}+\delta_{j}^{h} u_{i}+k_{j}^{h} v_{i}, \\
& \nabla_{j} u_{i}=f_{j}^{i}-\alpha k_{j i}, \\
& \nabla_{j} v_{i}=-k_{j h} f_{i}^{h}+\alpha g_{j i} ; \\
& \nabla_{j} w_{i}=\beta g_{j i}+\gamma k_{j i}, \\
& \nabla_{j} \alpha=k_{j i} i^{i}-v_{j}=-2 v_{j}, \\
& \nabla_{j} \beta=-w_{j}, \\
& \nabla_{j} r=-k_{j}^{i} w_{i}, \\
& \nabla_{j} \nabla_{i} u_{h}=-g_{j i} u_{h}+g_{j h} u_{i}-k_{j i} v_{h}+k_{j h} v_{i}+2 k_{i h} v_{j ;}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& S_{j i}^{h}=-\left(\nabla_{j} f_{i}^{m}\right) f_{m}^{h}+\left(\nabla_{i} f_{j}^{m}\right) f_{m}^{h}+f_{j}^{m} \nabla_{m} f_{i}^{h}-f_{i}^{m} \nabla_{m} f_{j}^{h} \\
& +\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right) u^{h}+\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right) v^{h}+\left(\nabla_{j} w_{i}-\nabla_{i} w_{j}\right) w^{h} \\
& =-2\left(k_{j}^{m} f_{m}^{h} v_{i}-k_{i}^{m} f_{m}^{h} v_{j}\right) \\
& =2 v_{j}\left(\nabla_{i} v^{h}-\alpha \delta_{i}^{h}\right)-2 v_{i}\left(\nabla_{j} v^{h}-\alpha \delta_{j}^{h}\right) .
\end{aligned}
$$

§3. A characterization of $S^{n} \times S^{n+1}$.
In this section, we study complete Riemannian manifolds admitting ($f, g, u(k)$, $\alpha(k)$)-structures which satisfies some of differential equations obtained in the last part of $\S 2$.

We first prove
THEOREM 1. Let M be a complete and connected $n(>2)$-dimensional Riemannian manifold M with metric tensor $g_{j i}$, and assume that there exist in M a symmetric tensor field $k_{j i}$ and a skew-symmetric tensor field $f_{j i}$ which satisfy

$$
\begin{equation*}
\operatorname{trace}\left(k_{j}^{i}\right)=\text { constant }, \tag{3.1}
\end{equation*}
$$

(3.2)

$$
-(n-2) \sqrt{A} \leq \operatorname{trace}\left(k_{j}^{i}\right) \leq(n-2) \sqrt{A}
$$

$$
\begin{equation*}
\nabla_{k} k_{j i}-\nabla_{j} k_{k i}=0, \tag{3.3}
\end{equation*}
$$

$$
k_{j m} k_{i}^{m}=A g_{j i}
$$

A being a differentiable function, and there exists a non-trivial differentiable function α such that

$$
\begin{equation*}
\nabla_{j} \nabla_{i} \alpha=2 k_{j m} f_{i}^{m}-2 \alpha g_{j i}, \tag{3.5}
\end{equation*}
$$

where

$$
k_{j}^{i}=k_{j m} g^{i m} \text { and } f_{j}^{i}=f_{j m} g^{i m}
$$

Then, M is globally isometric to $S^{n}\left(\frac{1}{\sqrt{2}}\right)$ or $S^{p}\left(\frac{1}{\sqrt{2}}\right) \times S^{n-p}\left(\frac{1}{\sqrt{2}}\right)$ or $\left[S^{p}\left(\frac{1}{\sqrt{2}}\right) \times S^{n-p}\left(\frac{1}{\sqrt{2}}\right)\right]^{*},(2 \leq p \leq n-2), S^{p}\left(\frac{1}{\sqrt{2}}\right)$ being p-dimensional sphere with radius $\frac{1}{\sqrt{2}}$.

PROOF. Differentiating (3.4) covariantly, we find

$$
\begin{equation*}
\left(\nabla_{k} k_{j m}\right) k_{i}^{m}+k_{j m}\left(\nabla_{k} k_{i}^{m}\right)=\left(\nabla_{k} A\right) g_{j i} \tag{3.6}
\end{equation*}
$$

from which, contracting j and i and using (3.3), $2 k_{j i}\left(\nabla_{k} k^{j i}\right)=(2 n+1) \nabla_{k} A$. If we contract again k and i in (3.6) and use (3.1) and (3.2), (3.6) can be written as

$$
k_{i m}\left(\nabla_{j} k^{i m}\right)=\nabla_{j} A
$$

From the last two equations we have $A=$ constant.
If $A=0$, then we have from (3.4), $k_{j i}=0$.
Thus (3.5) becomes

$$
\nabla_{j} \nabla_{i} \alpha=-(\sqrt{2})^{2} \alpha g_{j i}
$$

Since M is complete, by the theorem of Obata, M is isometric to a sphere $S^{2 n+1}\left(\frac{1}{\sqrt{2}}\right)$.
Since A is a constant, we consider only $A \neq 0$.
We have from (3.5),

$$
\begin{equation*}
k_{j m} f_{i}^{m}-k_{i m} f_{j}^{m}=0 \tag{3.7}
\end{equation*}
$$

Putting

$$
\begin{equation*}
P_{i}^{h}=\frac{1}{2}\left(\delta_{i}^{h}+\frac{1}{\sqrt{\bar{A}}} k_{i}^{h}\right), \tag{3.8}
\end{equation*}
$$

we have from (3.4), (3.5) and (3.7)

$$
\begin{equation*}
P_{l}^{i} \nabla_{j} \nabla_{i} \alpha=k_{j m} f_{l}^{m}+\sqrt{A} f_{j l}-\frac{\alpha}{\sqrt{\bar{A}}} k_{j l}-\alpha g_{j l} \tag{3.9}
\end{equation*}
$$

from which, using (3.4) and (3.6),

$$
\begin{equation*}
P_{k}^{j} P_{l}^{i} \nabla_{j} \nabla_{i} \alpha=-2 \alpha P_{k l} \tag{3.10}
\end{equation*}
$$

If we put $Q_{i}^{h}=\delta_{i}^{h}-P_{i}^{h}$, then we can see that $P_{i}^{l} P_{l}^{h}=P_{i}^{h}, P_{i}^{l} Q_{l}^{h}=0, Q_{i}^{l} Q_{l}^{h}=Q_{i}^{h}$ by virtue of (3.8).

Using (3.3) and $A=$ constant, we find

$$
\nabla_{k} P_{i}^{h}-\nabla_{i} P_{k}^{h}=0
$$

from which, $\nabla_{k} P_{i}^{h}=0$ (See Lemma 1.1 in [2]).
Thus P_{i}^{h} and Q_{i}^{h} are two conplementary almost product structures such that $\nabla_{k} P_{i}^{h}=0$.

Moreover, from (3. in) and (3.9), we get

$$
\begin{aligned}
& Q_{l}^{i} \nabla_{j} \nabla_{i} \alpha=\left(\delta_{l}^{i}-P_{l}^{i}\right) \nabla_{j} \nabla_{i} \alpha \\
& \quad=k_{j m} f_{l}^{m}-\alpha g_{j l}-\sqrt{A} f_{j l}+\frac{\alpha}{\sqrt{A}} k_{j l}
\end{aligned}
$$

from which, using (3.8) and (3.10),

$$
Q_{k}^{j} Q_{l}^{i} \nabla_{j} \nabla_{i} \alpha=-2 \alpha Q_{k l^{\bullet}}
$$

On the other hand, from (3.2) and (3.8), we find $2 \leq r a n k ~\left(P_{i}^{h}\right) \leq n-2$. Therefore, the assumptions of Theorem A are all satisfied and consequently the conclusions of Theorem A are valid.

We next prove
THEOREM 2. Assume that a complete and connected ($2 n+1$)-dimensional differentiable manifold M admits an $(f, g, u(k), \alpha(k))$-structure such that $\alpha^{2}+\beta^{2}$ $+\gamma^{2} \neq 1, \alpha \neq 0, \beta \neq 0$ and $\gamma \neq 0$ almost everywhere, and

$$
\begin{equation*}
\nabla_{j} \alpha=-2 v_{i}, \quad \nabla_{j} \beta=-w_{j} \tag{3.11}
\end{equation*}
$$

If there exists a tensor field $k_{j i}$ of type $(0,2)$ which satisfies

$$
\begin{equation*}
\nabla_{j} u_{i}=f_{j i}-\alpha k_{j i} \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{k} \nabla_{j} u_{i}=-g_{k j} u_{i}+g_{k i} u_{j}-k_{k j} v_{i}+k_{k i} v_{j}+2 k_{j i} v_{k} \tag{3.13}
\end{equation*}
$$

where ∇ denotes the Levi-Civita connection induced from the Riemannian metric tensor $g_{j i}$. Then M is isometric to $S^{n+1}\left(\frac{1}{\sqrt{2}}\right) \times S^{n}\left(\frac{1}{\sqrt{2}}\right)$ or $\left[S^{n+1}\left(\frac{1}{\sqrt{2}}\right) \times S^{n}\left(\frac{1}{\sqrt{2}}\right)\right]^{*}$.

Proof. We have from (3.12)

$$
\nabla_{j} u_{i}+\nabla_{i} u_{j}=-2 \alpha k_{j i},
$$

from which, differentiating covariantly and substituting (3.11) and (3.13), $\alpha \nabla_{k} k_{j i}=0$. Since α is almost everywhere non-zero in M, we have $\nabla_{k} k_{j i}=0$.

If we differentiate covariantly and take account of (3.11), (3.13) and $\nabla_{k} k_{j i}=$ 0 , we see that
(3.14)

$$
\nabla_{k} f_{j i}=-g_{k j} u_{i}+g_{k i} u_{j}-k_{k j} v_{i}+k_{k i} v_{j}
$$

On the other hand, we have from (3.12)

$$
\nabla_{j} u_{i}-\nabla_{i} u_{j}=2 f_{j i}
$$

from which, transvecting u^{j} and substituting (2.6) and (2.9)

$$
u^{j} \nabla_{j} u_{i}=\frac{1}{2} \nabla_{i}\left(1-\alpha^{2}-\beta^{2}\right)-2\left(\alpha v_{i}+\beta w_{i}\right),
$$

from which, using (3.11)

$$
\begin{equation*}
u^{j} \nabla_{j} u_{i}=-\beta w_{i} . \tag{3.15}
\end{equation*}
$$

Transvecting (3.12) with u^{j} and using (2.6) and (3.15), we obtain

$$
\begin{equation*}
k_{j i} u^{i}=-v_{j} \tag{3.16}
\end{equation*}
$$

because α is almost everywhere non-zero.
Differentiating (3.16) covariantly and taking account of $\nabla_{k} k_{j i}=0$ and (3.12), we have

$$
\begin{equation*}
-\nabla_{k} v_{j}=k_{j m} f_{k}^{m}-\alpha k_{j m} k_{k}^{m} \tag{3.17}
\end{equation*}
$$

From the first equation of (3.11) we see that $\nabla_{j} v_{k}-\nabla_{k} v_{j}=0$. Thus (3.17) implies that
(3.18)

$$
k_{j m} f_{k}^{m}-k_{k m} f_{j}^{m}=0
$$

Transvecting u^{k} to (3.18) and using (2.6), (2.7) and (3.16), we get

$$
\begin{equation*}
\alpha k_{j m} v^{m}=-\beta k_{j m} w^{m}+\gamma w_{j}-\alpha u_{j} . \tag{3.19}
\end{equation*}
$$

Transvecting again (3.18) with $f^{j k}$ and making use of (2.5) and the skewsymmetry of $f^{j k}$, we find

$$
\begin{equation*}
k_{m}^{m}=k_{j i} u^{j} u^{i}+k_{j i}{ }^{j} v^{i}+k_{j i} w^{j} w^{2} . \tag{3.20}
\end{equation*}
$$

Differentiating (3.18) covariantly and substituting (3.14), we obtain

$$
\begin{aligned}
& k_{j m}\left(-g_{k i} u^{m}+\delta_{k}^{m} u_{i}-k_{k i} v^{m}+k_{k}^{m} v_{i}\right) \\
& =k_{i m}\left(-g_{k j} u^{m}+\delta_{k}^{m} u_{j}-k_{k j} v^{m}+k_{k}^{m} v_{j}\right)
\end{aligned}
$$

by virtue of $\nabla_{k} k_{i j}=0$, or, using (3.16)
(3.21)

$$
\begin{aligned}
& g_{k i} v_{j}+k_{j k} u_{i}-\left(k_{j m} v^{m}\right) k_{k i}+\left(k_{j m} k_{k}^{m}\right) v_{i} \\
& =g_{k j} v_{i}+k_{i k} u_{j}-\left(k_{i m} v^{m}\right) k_{k j}+\left(k_{i m} k_{k}^{m}\right) v_{j}
\end{aligned}
$$

Differentiating the second equation of (2.9) covariantly, we find

$$
\left(\nabla^{j} u^{i}\right) v^{i}+u^{i}\left(\nabla_{j} v_{i}\right)=-\left(\nabla_{j} \beta\right) r-\beta \nabla_{j} r
$$

from which, substituting (3.11), (3.12) and (3.17),

$$
\beta \nabla_{j} r=\gamma w_{j}-\left(f_{j}^{i}-\alpha k_{j}^{i}\right) v_{i}+u^{i}\left(k_{i m} f_{j}^{m}-\alpha k_{i m} k_{j}^{m}\right),
$$

or, using (2.7) and (3.16),
(3.22)

$$
\beta \nabla_{j} \gamma=2 \alpha k_{j m} v^{m}+2 \alpha u_{j}-\gamma w_{j} .
$$

Differentiating the first equation of (2.7) covariantly, we find

$$
\left(\nabla_{j} f_{i}^{h}\right) v_{h}+f_{i}^{h}\left(\nabla_{j} v_{h}\right)=\left(\nabla_{j} r\right) w_{i}+\gamma \nabla_{j} w_{i}-\left(\nabla_{j} \alpha\right) u_{i}-\alpha \nabla_{j} u_{i},
$$

from which, taking skew-symmetric parts,

$$
\begin{aligned}
& \left(\nabla_{j} f_{i}^{h}-\nabla_{i} f_{j}^{h}\right) v_{h}+f_{i}^{h}\left(\nabla_{j} v_{h}\right)-f_{j}^{h}\left(\nabla_{i} v_{h}\right) \\
& =\left(\nabla_{j} r\right) w_{i}-\left(\nabla_{i} r\right) w_{j}-\left(\nabla_{j} \alpha\right) u_{i}+\left(\nabla_{i} \alpha\right) u_{j}-\alpha\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right),
\end{aligned}
$$

or, using (3.11), (3.12), (3.14) and (3.17),

$$
\begin{align*}
& -\left(v_{j} u_{i}-v_{i} u_{j}\right)+\left(k_{j m} v^{m}\right) v_{i}-\left(k_{i m} v^{m}\right) v_{j}+2 \alpha f_{i}^{h} k_{h m} k_{j}^{m} \tag{3.23}\\
& =\left(\nabla_{j} r\right) w_{i}-\left(\nabla_{i} r\right) w_{j}-2 \alpha f_{j i^{*}}
\end{align*}
$$

Transvecting (3.23) with u^{j} and making use of (2.6), (2.7), (2.9), (2.10) and (3.16), we have

$$
\begin{align*}
& \left(\gamma^{2}-\beta^{2}\right) v_{i}+\beta r\left(k_{i}^{m} v_{m}\right)+2 \alpha \gamma k_{i m} w^{m} \tag{3.24}\\
& =\left(u^{m} \nabla_{m} \gamma\right) w_{i}-\alpha \gamma \nabla_{i} r-\beta \gamma u_{i}+2 \alpha \beta w_{i},
\end{align*}
$$

from which, using (3.19),

$$
\begin{aligned}
& \beta\left(\gamma^{2}-\beta^{2}\right) v_{i}+\beta^{2} \gamma\left(k_{i}^{m} v_{m}\right)+2 \alpha \gamma\left(-\alpha k_{i m} v^{m}+\gamma w_{i}-\alpha u_{i}\right) \\
& =\beta\left(u^{m} \nabla_{m} \gamma\right) w_{i}-\alpha \beta \gamma \nabla_{i} r-\beta^{2} \gamma u_{i}+2 \alpha \beta^{2} w_{i^{*}}
\end{aligned}
$$

Since $\beta u^{m} \nabla_{m} \gamma=-2 \alpha \beta^{2}+\alpha \gamma^{2}$, from (3.16) and (3.22), the above equation becomes $\beta^{2} \gamma\left(k_{i m} v^{m}\right)=-\beta^{2} \gamma u_{i}+\beta\left(\beta^{2}-\gamma^{2}\right) v_{i}$, and consequently

$$
\begin{equation*}
k_{i m} v^{m}=-u_{i}+\left(\left(\beta^{2}-\gamma^{2}\right) / \beta \gamma\right) v_{i} \tag{3.25}
\end{equation*}
$$

Substituting (3.25) into (3.21), (3.21) becomes
(3.26) $v_{j}\left\{g_{k i}-\left(\left(\beta^{2}-\gamma^{2}\right) / \beta \gamma\right) k_{k i}-k_{k m} k_{i}^{m}\right\}=v_{i}\left\{g_{k j}-\left(\left(\beta^{2}-\gamma^{2}\right) / \beta \gamma\right) k_{k j}-k_{k m} k_{j}^{m}\right\}$.

Using (3.25), we also find
$v^{m}\left[g_{k m}-\left(\left(\beta^{2}-\gamma^{2}\right) / \beta \gamma\right) k_{k m}-k_{k j} k_{m}^{j}\right]=-2\left(\left(\beta^{2}-\gamma^{2}\right) / \beta \gamma\right)\left\{-u_{k}+\left(\left(\beta^{2}-\gamma^{2}\right) / \beta \gamma\right) v_{k}\right\}$.
Transvecting (3.26) with v^{j} and using the above equation, we get

$$
\begin{align*}
& 0=\left(1-\alpha^{2}-\gamma^{2}\right)\left\{g_{k i}-\left(\left(\beta^{2}-\gamma^{2}\right) / \beta \gamma\right) k_{k i}-k_{k m} k_{i}^{m}\right\} \tag{3.27}\\
& +2\left(\left(\beta^{2}-\gamma^{2}\right) / \beta \gamma\right)\left\{-v_{i} u_{k}+\left(\left(\beta^{2}-\gamma^{2}\right) / \beta \gamma\right) v_{i} v_{k}\right\},
\end{align*}
$$

from which $0=\left(\left(\beta^{2}-\gamma^{2}\right) / \beta \gamma\right)\left(v_{k} u_{i}-v_{i} u_{k}\right)$, and consequently

$$
\begin{equation*}
\beta^{2}-\gamma^{2}=0 . \tag{3.28}
\end{equation*}
$$

Thus, using (3.27) and (3.28),
(3.29) $\quad k_{j m} k_{i}^{m}=g_{j i}$.

Also, from (3.19), (3.25) and (3.28), we have

$$
\begin{equation*}
k_{j m} v^{m}=-u_{j}, k_{j m} w^{m}=\frac{r}{\beta} w_{j} . \tag{3.30}
\end{equation*}
$$

Moreover, from (3.11) and (3.17),

$$
\begin{equation*}
\nabla_{k} \nabla_{j} \alpha=2 k_{k m} f_{j}^{m}-2 \alpha g_{k j} \tag{3.31}
\end{equation*}
$$

and, using (2.9), (2.11), (3.16), (3.20) and (3.30),

$$
\begin{equation*}
k_{m}^{m}=\frac{\gamma}{\beta}= \pm 1 \tag{3.32}
\end{equation*}
$$

by virtue of (3.28).
Since the manifold is connected, $k_{m}^{m}=1$ or $k_{m}{ }^{m}=-1$ on the whole space. Thus the equations (3.29), (3.31), (3.32), $\nabla_{k} k_{j i}=0$ and Theorem 1 prove the theorem.

Kyungpook University

BIBLIOGRAPHIES

[1] Blair, D.E., G.D. Ludden and K. Yano, On the intrinsic geometry of $S^{n} \times S^{n}$, Math. Ann. 194 (1971), 68-77.
[2] Ishihara, S. and U-Hang Ki, Complete Riemannian manifold with (f, g, u, v, λ)-structure, to appear in Jour. Diff. Geo.
[3] Ki, U-Hang, Jin Suk Pak and Hyun Bae Suh, On (f, $\left.g, u_{(k)}, \alpha_{(k)}\right)$-structures, to appear in Kōdai Math. Sem. Rep.
[4] Yano, K., Differential geometry of $S^{n} \times S^{n}$, to appear in Jour. Diff. Geo.

