Kyungpook Math. J. Volume 13, Number 2 December, 1973

INTRINSIC PROBLEMS ON
$$S^n\left(\frac{1}{\sqrt{2}}\right) \times S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$$

By U-Hang Ki and Jin Suk Pak

Dedicated to Prof. A. Kawaguchi on his seventieth birthday

§0. Introduction.

Ishihara and one of the present authors [2] have studied properties of an almost product structure in a Riemannian manifold, and have proved a theorem on the characterization of product spaces of two spheres:

THEOREM A. Let (M,g) be a complete and connected Riemannian manifold of dimension m and let there be given in (M, g) two complementary almost product structures P_i^h and Q_i^h such that $\nabla_k P_i^h = 0$. Assume that P_i^h is of rank r and $2 \leq 1$ $r \leq m-2$. If there is in (M, g) a non-constant function λ satisfying

$$P_{j}^{t}P_{i}^{s}\nabla_{t}\nabla_{s}\lambda = -\frac{\lambda}{a^{2}}P_{ji},$$

$$Q_{j}^{t}Q_{i}^{s}\nabla_{t}\nabla_{s}\lambda = -\frac{\lambda}{b^{2}}Q_{ji}^{s}$$

where a and b are positive constants, then (M, g) is isometric with $S'(a) \times S^{m-r}(b)$ or $[S'(a) \times S^{m-r}(b)]^*$, $[S'(a) \times S^{m-r}(b)]^*$ being the factor space $S'(a) \times S^{m-r}(b) / \sim$ with Riemannian metric induced from that of $S'(a) \times S^{m-r}(b)$ by the projection.

Recently, the present authors and Suh [4] defined the so-called (f, g, u(k), $\alpha(k)$) -structure which is naturally induced on a hypersurface of a manifold with (f, g, u, v, λ)-structure or on a submanifold of codimension 2 of an almost contact metric space, and studied a hypersurface of even-dimensional sphere in terms of this structure by means of theorem A.

The main purpose of this paper is studying a characterization of $S^n \times S^{n+1}$ in terms of $(f, g, u(k), \alpha(k))$ -structure by using of Theorem A.

In §1, we discuss intrinsic properties of $S^n \times S^{n+1}$. In §2, we find some properties of $(f, g, u(k), \alpha(k))$ -structure induced on $S^n \times S^{n+1}$ as a submanifold of codimension 2 of (2n+3)-dimensional Euclidean space E^{2n+3} for later use, In §3, we study complete Riemannian manifolds admitting an (f, g, u(k), $\alpha(k)$)-

288 U-Hang Ki and Jin Suk Pak

structure which satisfies certain conditions.

§1.
$$S^n\left(\frac{1}{\sqrt{2}}\right) \times S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$$
 as a submanifold of codimension 2 of E^{2n+3} .

Let E^{n+2} be an (n+2)-dimensional Euclidean space and 0 the origin of a cartesian coordinate system in E^{n+2} and denote by X the position vector of a point P in E^{n+2} with respect to the origin 0.

$$\pi \pi = \pi + 1/1$$
 $\pi = 1$

We consider a sphere $S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$ with the center at 0 and with radius $\frac{1}{\sqrt{2}}$, and suppose that $S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$ is covered by a system of coordinate neighborhoods $\{U: x^a\}$, where here and in the sequel the indices a, b, c... run over the range $\{1, 2, ..., n+1\}$. Then the position vector X of a point P on $S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$ is a function of (x^a) satisfying $X \cdot X = \frac{1}{2}$, where the dot denotes the inner product of two vectors in a Euclidean space.

Now we put

(1.1)
$$X_b = \partial_b X, \quad M = -\sqrt{2} X, \quad g_{cb} = X_c \cdot X_b,$$

where $\partial_b = \partial/\partial x^b$, and denote by ∇_c the operator of covariant differentiation with respect to the Christoffel symbols $\begin{cases} a \\ cb \end{cases}$ formed with the metric tensor g_{cb} . Then X_b being tangent to $S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$ and M being the unit normal to $S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$, we have equations of Gauss and those of Weingarten respectively in the forms

(2.2)
$$\nabla_c X_b = \sqrt{2} g_{cb} M$$
, $\nabla_c M = -\sqrt{2} X_c$.
We next suppose that $S^n \left(\frac{1}{\sqrt{2}}\right)$ is covered by a system of coordinate neighbor-
hoods $\{V: (x')\}$, where here and in the sequel the indices r, s, t, \cdots run over the
range $\{n+2, \cdots, 2n+1\}$. Then the position vector Y of a point Q on $S^n \left(\frac{1}{\sqrt{2}}\right)$
is also a function of (x') satisfying $Y \cdot Y = \frac{1}{2}$.
We now put
(1.3) $Y_s = \partial_s Y$, $N = -\sqrt{2}Y$, $g_{ts} = Y_t \cdot Y_s$,
where $\partial_s = \partial/\partial x^s$, and denote by ∇_t the operator of covariant differentiation with
respect to the Christoffel symbols $\{s t \}$ formed with the metric tensor g_{ts} . Then
 Y_s being tangent to $S^n \left(\frac{1}{\sqrt{2}}\right)$ and N being unit normal to $S^n \left(\frac{1}{\sqrt{2}}\right)$, we have

equations of Gauss and those of Weingarten respectively in the forms

Intrinsic Problems on $S^n(\frac{1}{\sqrt{2}}) \times S^{n+1}(\frac{1}{\sqrt{2}})$ 289 (1.4) $\nabla_t Y_s = \sqrt{2} g_{ts} N, \ \nabla_t N = -\sqrt{2} Y_t.$ We now consider $S^n(\frac{1}{\sqrt{2}}) \times S^{n+1}(\frac{1}{\sqrt{2}})$ and regard it as a submanifold of codimension 2 in a (2n+3)-dimensional Euclidean space E^{2n+3} . Denoting by Z the position vector of a point of $S^n(\frac{1}{\sqrt{2}}) \times S^{n+1}(\frac{1}{\sqrt{2}})$, we have $I = \sqrt{X(x^a)}$

ı

•

(1.5)
$$Z(x^n) = \begin{cases} T(x^n) \\ Y(x^n) \end{cases},$$

where here and in the sequel the indices h, i, j, \cdots run over the range $\{1, 2, \cdots, n, n+1, \cdots, 2n+1\}$. Since $Z \cdot Z = X \cdot X + Y \cdot Y = 1$ in E^{2n+3} , $S^n \left(\frac{1}{\sqrt{2}}\right) \times S^{n+1} \left(\frac{1}{\sqrt{2}}\right)$ is a hypersurface of $S^{2n+2}(1)$ in E^{2n+3} .

§2. (f, g, u(k), $\alpha(k)$)-structure on $S^n\left(\frac{1}{\sqrt{2}}\right) \times S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$. Let E^{2n+3} be a (2n+3)-dimensional Euclidean space with cartesian coordinates $\{y^k\}$. (The indices κ, μ, ν, \cdots run over the range $\{1, 2, \cdots, 2n+3\}$). If we put

$$(\eta_{\lambda}) = (0, \dots, 0, 1),$$
$$(\xi^{\lambda}) = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

$$(G_{\mu\lambda}) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 \end{pmatrix}$$

is a positive definite Riemannian metric in E^{2n+3} . If we set

Thus the aggregate $(\varphi_{\mu}^{\lambda}, \eta_{\mu}, \hat{\xi}^{\lambda}, G_{\lambda\mu})$ is an almost contact metric structure in E^{2n+3} with cartesian coordinates. Moreover, denoting $\tilde{\nabla}_{\mu}$ by the operator of covariant differentiation with respect to the Christoffel symbol $\{ \begin{matrix} \lambda \\ \mu\nu \end{matrix} \}$ formed with $G_{\mu\nu}$, we find $\tilde{\nabla}_{\mu} \hat{\xi}^{\nu} = 0$, $\tilde{\nabla}_{\mu} \eta^{\nu} = 0$ and $\tilde{\nabla}_{\mu} \varphi_{\lambda}^{\nu} = 0$. Hence $(\varphi_{\mu}^{\lambda}, \eta_{\mu}, \hat{\xi}^{\lambda}, G_{\lambda\mu})$ is a cosympletic structure. In this section, we want to derive the $(f, g, u(k), \alpha(k))$ -structure induced on $S^{n}(\frac{1}{\sqrt{2}}) \times S^{n+1}(\frac{1}{\sqrt{2}})$ as a submanifold of codimension 2 of E^{2n+3} with cosympletic structure.

structure.

Now, putting

$$Z_i = \partial_i Z_i$$

we see that

$$Z_{b} = \begin{pmatrix} X_{b} \\ 0 \end{pmatrix}, \qquad \qquad Z_{s} = \begin{pmatrix} 0 \\ Y_{s} \end{pmatrix}$$

and the induced Riemannian metric g_{ji} of $G_{\mu\lambda}$ has the form

 $(g_{ji}) = \begin{pmatrix} g_{cb} & 0 \\ 0 & g_{tc} \end{pmatrix},$

and hence

$$(g^{ji}) = \begin{pmatrix} g^{cb} & 0 \\ 0 & g^{ts} \end{pmatrix},$$

 g^{ji} , g^{cb} and g^{ts} being components of inverse matrices of (g_{ji}) , (g_{cb}) and (g_{ts}) respectively.

Setting

.

$$C = \begin{pmatrix} -X(x^{a}) \\ -Y(x^{r}) \end{pmatrix}, \qquad D = \begin{pmatrix} -X(x^{a}) \\ Y(x^{r}) \end{pmatrix},$$

we find $Z_i \cdot C = 0$, $Z_i \cdot D = 0$, $C \cdot C = D \cdot D = 1$ and $C \cdot D = 0$, where the dot denotes the inner product reduced from $G_{\mu\lambda}$ in E^{2n+3} , and consequently that C and D are

Intrinsic Problems on
$$S^n\left(\frac{1}{\sqrt{2}}\right) \times S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$$

291

unit normals to $S^n\left(\frac{1}{\sqrt{2}}\right) \times S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$.

If we denote by ∇ the induced connection on $S^n\left(\frac{1}{\sqrt{2}}\right) \times S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$ from connection $\widetilde{\nabla}$ of E^{2n+3} and denote by h_{ji} and k_{ji} components of the second fundamental tensors respectively with respect to unit normals C and D, equations of Gauss are written as $\nabla_j Z_i = h_{ji}C + k_{ji}D$.

· · ·

Then

and hence

$$(h_j^i) = \begin{pmatrix} \delta_b^c & 0 \\ 0 & \delta_t^s \end{pmatrix}, \quad (k_j^i) = \begin{pmatrix} \delta_c^b & 0 \\ 0 & -\delta_t^s \end{pmatrix},$$

where $h_i^i = h_{ih}g^{jh}$ and $k_i^i = k_{ih}g^{ih}$. From these relations we have $h_{ji} = g_{ji}$, $k_h^h = -1$ and $k_j^m k_m^h = \delta_j^h$. Also, taking account of the fact that k_i^i has the form given by the above and

the Christoffel symbols $\begin{cases} h \\ j & i \end{cases}$ are all zero except $\begin{cases} a \\ c & b \end{cases}$ and $\begin{cases} r \\ t & s \end{cases}$, denoting by l_j components of the third fundamental tensor with respect to unit normals C and D, equations of Weingarten can be written as

$$\nabla_j C = -h_j^i Z_i + l_j D,$$

$$\nabla_j D = -k_j^i Z_i - l_j C.$$

By the way, the third fundamental tensor l_i vanishes because of the definition of

and equation of Weingarten, hence $\nabla_j Z_i = g_{ji}C + k_{ji}D$, $\nabla_j C = -Z_j$ and $\nabla_j D = -i$ C $k_i^i Z_i$.

Finally, we consider transforms φZ_i , φC and φD of Z_i , C and D by φ respectively:

(2.1)
$$\varphi Z_i = f_i^h Z_h + u_i C + v_i D,$$

(2.2)	$\varphi C = -u^i Z_i + \alpha D,$
-------	------------------------------------

(2.3)
$$\varphi D = -v^i Z_i - \alpha C,$$

where f_i^h are components of a tensor field of type (1, 1), u_i and v_i those of

· · . .

U-Hang Ki and Jin Suk Pak 292 1-forms and α a function of $S^n\left(\frac{1}{\sqrt{2}}\right) \times S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$, u^i and v^i being respectively given by $u^i = u_j g^{ji}$ and $v^i = v_j g^{ji}$. If we write $\hat{\xi} = w^i Z_i + \beta C + \gamma D,$ (2.4) then from (2.1), (2.2), (2.3) and (2.4) we can easily see that $S^n\left(\frac{1}{\sqrt{2}}\right) \times$

S ⁿ⁻¹	$^{+1}\left(\frac{1}{\sqrt{2}}\right)$ admits an	(f, g, $u(k)$, $\alpha(k)$)-structure (See (3)), that is,
(2.5)	$f_{j}^{k}f_{k}^{i} = -\delta_{j}^{i} + u_{j}u^{i} + v_{j}v^{i} + w_{j}w^{i},$
(2.6)	$f_i^h u_h = \alpha v_i + \beta w_i, f_i^h u^i = -\alpha v^h - \beta w^h,$
(2.7)	$f_i^h v_h = \gamma w_i - \alpha u_i, \ f_i^h v^i = -\gamma w^h + \alpha u^h,$
(2.8)	$f_i^h w_h = -\beta u_i - \gamma v_i, \ f_i^h w^i = \beta u^h + \gamma v^h,$
(2.9)	$u^{i}u_{i}=1-\alpha^{2}-\beta^{2}, u^{i}v_{i}=-\beta\gamma, u^{i}w_{i}=\alpha\gamma,$
(2.10)	$v^i u_i = -\beta \gamma, v^i v_i = 1 - \alpha^2 - \gamma^2, v^i w_i = -\alpha \beta,$
(2.11)	$w^{i}u_{i} = \alpha\gamma, w^{i}v_{i} = -\alpha\beta, w^{i}w_{i} = 1 - \beta^{2} - \gamma^{2},$
(2.12)	$f_j^m f_i^n g_{mn} = g_{ji} - u_j u_i - v_j v_i - w_j w_i,$

where $w_i = g_{ij}w'$. Moreover, putting i=b in (2.1), we have $f_b^a=0$, $u_b+v_b=0$. Also, putting i=s in (2.1), we obtain $f_t^s=0$, $u_s-v_s=0$. Thus

$$(f_i^h) = \begin{pmatrix} 0 & f_s^a \\ f_b^r & 0 \end{pmatrix},$$

$$(u_i) = (u_b, u_s), \quad (u^h) = \begin{pmatrix} u^a \\ u^r \end{pmatrix},$$
where $u^a = u_b g^{ba}$, $u^r = u_s g^{sr}$ and $(v_i) = (-u_b, u_s), \quad (v^h) = \begin{pmatrix} -u^a \\ u^r \end{pmatrix}$

because the induced metric g_{ji} of $G_{\lambda\mu}$ has the form

· ·

-· · ·

•

.

.

1

Υ.

Intrinsic Problems on
$$S^n\left(\frac{1}{\sqrt{2}}\right) \times S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$$
 293

$$\begin{pmatrix} g_{ba} & 0 \\ 0 & g_{st} \end{pmatrix}$$

Thus $k_j^h u^j = -v^h$, $k_j^h v^j = -u^h$, and moreover, $k_{jm} f_i^m - k_{im} f_j^m = 0$.

.

-

•

On the other hand, applying the operator ∇ of covariant differentiation to (2.1), (2.2), (2.3) and (2.4) and taking account of $\tilde{\nabla}\varphi=0$, $\tilde{\nabla}\eta=0$ and $\tilde{\nabla}\xi=0$, we get

$$\begin{aligned} \nabla_{j}f_{i}^{h} &= -g_{ji}u^{h} - k_{ji}v^{h} + \delta_{j}^{h}u_{i} + k_{j}^{h}v_{i}, \\ \nabla_{j}u_{i} &= f_{j}^{i} - \alpha k_{ji}, \\ \nabla_{j}v_{i} &= -k_{jh}f_{i}^{h} + \alpha g_{ji}, \\ \nabla_{j}v_{i} &= \beta g_{ji} + \gamma k_{ji}, \\ \nabla_{j}\alpha &= k_{ji}u^{i} - v_{j} = -2v_{j}, \\ \nabla_{j}\alpha &= k_{ji}u^{i} - v_{j} = -2v_{j}, \\ \nabla_{j}\beta &= -w_{j}, \\ \nabla_{j}\gamma &= -k_{j}^{i}w_{i}, \\ \nabla_{j}\nabla_{i}u_{h} &= -g_{ji}u_{h} + g_{jh}u_{i} - k_{ji}v_{h} + k_{jh}v_{i} + 2k_{ih}v_{j}, \\ S_{ji}^{h} &= -(\nabla_{j}f_{i}^{m})f_{m}^{h} + (\nabla_{i}f_{j}^{m})f_{m}^{h} + f_{j}^{m}\nabla_{m}f_{i}^{h} - f_{i}^{m}\nabla_{m}f_{j}^{h} \\ &+ (\nabla_{j}u_{i} - \nabla_{i}u_{j})u^{h} + (\nabla_{j}v_{i} - \nabla_{i}v_{j})v^{h} + (\nabla_{j}w_{i} - \nabla_{i}w_{j})w^{h} \\ &= -2(k_{j}^{m}f_{m}^{h}v_{i} - k_{i}^{m}f_{m}^{h}v_{j}) \\ &= 2v_{j}(\nabla_{i}v^{h} - \alpha\delta_{i}^{h}) - 2v_{i}(\nabla_{j}v^{h} - \alpha\delta_{j}^{h}). \end{aligned}$$

.

§3. A characterization of $S^n \times S^{n+1}$.

In this section, we study complete Riemannian manifolds admitting $(f, g, u(k), \alpha(k))$ -structures which satisfies some of differential equations obtained in the last part of §2.

.

We first prove

-

THEOREM 1. Let M be a complete and connected n(>2)-dimensional Riemannian manifold M with metric tensor g_{ji} , and assume that there exist in M a symmetric tensor field k_{ji} and a skew-symmetric tensor field f_{ji} which satisfy

$$(3.1) trace(k_j^i) = constant,$$

U-Hang Ki and Jin Suk Pak 294 $-(n-2)\sqrt{A} \leq trace(k_i^i) \leq (n-2)\sqrt{A}$, (3.2) $\nabla_k k_{ji} - \nabla_j k_{ki} = 0,$ (3.3) $k_{jm}k_i^m = Ag_{ji}$ (3.4)A being a differentiable function, and there exists a non-trivial differentiable function α such that

 $\nabla_i \nabla_i \alpha = 2k_{im} f_i^m - 2\alpha g_{ii},$ (3.5)

where
$$k_{j}^{i} = k_{jm}g^{im}$$
 and $f_{j}^{i} = f_{jm}g^{im}$.
Then, M is globally isometric to $S^{n}\left(\frac{1}{\sqrt{2}}\right)$ or $S^{p}\left(\frac{1}{\sqrt{2}}\right) \times S^{n-p}\left(\frac{1}{\sqrt{2}}\right)$ or
 $\left[S^{p}\left(\frac{1}{\sqrt{2}}\right) \times S^{n-p}\left(\frac{1}{\sqrt{2}}\right)\right]^{*}$, $(2 \le p \le n-2)$, $S^{p}\left(\frac{1}{\sqrt{2}}\right)$ being p-dimensional sphere with radius $\frac{1}{\sqrt{2}}$.

PROOF. Differentiating (3.4) covariantly, we find

 $(\nabla_k k_{jm}) k_i^m + k_{jm} (\nabla_k k_i^m) = (\nabla_k A) g_{ji},$ (3.6)

from which, contracting j and i and using (3.3), $2k_{ji}(\nabla_k k^{ji}) = (2n+1)\nabla_k A$. If we contract again k and i in (3.6) and use (3.1) and (3.2), (3.6) can be written as

$$k_{im}(\nabla_j k^{im}) = \nabla_j A.$$

From the last two equations we have A = constant.

If A=0, then we have from (3.4), $k_{ji}=0$. Thus (3.5) becomes $\nabla_i \nabla_i \alpha = -(\sqrt{2})^2 \alpha g_{ii}$ Since M is complete, by the theorem of Obata, M is isometric to a sphere $S^{2n+1}\left(\frac{1}{\sqrt{2}}\right).$

Since A is a constant, we consider only $A \neq 0$. We have from (3.5),

(3.7)
$$k_{jm}f_i^m - k_{im}f_j^m = 0.$$

Putting
(3.8) $P_i^h = \frac{1}{2} \left(\delta_i^h + \frac{1}{\sqrt{A}}k_i^h \right),$
we have from (3.4), (3.5) and (3.7)

$$(3.9) P_l^{\ i} \nabla_j \nabla_i \alpha = k_{jm} f_l^{\ m} + \sqrt{A} f_{jl} - \frac{\alpha}{\sqrt{A}} k_{jl} - \alpha g_{jl}$$

· · ·

•

.

.

Intrinsic Problems on
$$S^n\left(\frac{1}{\sqrt{2}}\right) \times S^{n+1}\left(\frac{1}{\sqrt{2}}\right)$$

295

from which, using (3.4) and (3.6),

$$(3.10) P_k^{\ j} P_l^{\ i} \nabla_j \nabla_i \alpha = -2\alpha P_{kl}$$

If we put $Q_i^h = \delta_i^h - P_i^h$, then we can see that $P_i^l P_l^h = P_i^h$, $P_i^l Q_l^h = 0$, $Q_i^l Q_l^h = Q_i^h$ by virtue of (3.8). Using (3.3) and A=constant, we find

$$\nabla_k P_i^h - \nabla_i P_k^h = 0,$$

from which, $\nabla_k P_i^h = 0$ (See Lemma 1.1 in [2]).

Thus P_i^h and Q_i^h are two conplementary almost product structures such that $\nabla_k P_i^h = 0$.

Moreover, from (3.5) and (3.9), we get $Q_{l}^{i}\nabla_{j}\nabla_{i}\alpha = (\delta_{l}^{i} - P_{l}^{i})\nabla_{j}\nabla_{i}\alpha$ $= k_{jm}f_{l}^{m} - \alpha g_{jl} - \sqrt{A}f_{jl} + \frac{\alpha}{\sqrt{A}}k_{jl},$

from which, using (3.8) and (3.10),

$$Q_k^{j}Q_l^{i}\nabla_j\nabla_i\alpha = -2\alpha Q_{kl}.$$

On the other hand, from (3.2) and (3.8), we find $2 \leq \operatorname{rank} (P_i^h) \leq n-2$. Therefore, the assumptions of Theorem A are all satisfied and consequently the conclusions of Theorem A are valid.

We next prove

THEOREM 2. Assume that a complete and connected (2n+1)-dimensional differentiable manifold M admits an $(f, g, u(k), \alpha(k))$ -structure such that $\alpha^2 + \beta^2$ $+\gamma^2 \neq 1, \ \alpha \neq 0, \ \beta \neq 0 \ and \ \gamma \neq 0 \ almost \ everywhere, \ and$ $(3.11) \qquad \nabla_j \alpha = -2v_i, \ \nabla_j \beta = -w_j.$

If there exists a tensor field k_{ii} of type (0, 2) which satisfies

$$(3.12) \qquad \qquad \nabla_j u_i = f_{ji} - \alpha k_{ji},$$

and

(3.13)
$$\nabla_{k}\nabla_{j}u_{i} = -g_{kj}u_{i} + g_{ki}u_{j} - k_{kj}v_{i} + k_{ki}v_{j} + 2k_{ji}v_{k},$$

where ∇ denotes the Levi-Civita connection induced from the Riemannian metric tensor g_{ji} . Then M is isometric to $S^{n+1}\left(\frac{1}{\sqrt{2}}\right) \times S^n\left(\frac{1}{\sqrt{2}}\right)$ or $\left[S^{n+1}\left(\frac{1}{\sqrt{2}}\right) \times S^n\left(\frac{1}{\sqrt{2}}\right)\right]^*$.

PROOF. We have from (3.12)

U-Hang Ki and Jin Suk Pak

 $\nabla_j u_i + \nabla_i u_j = -2\alpha k_{ji},$

from which, differentiating covariantly and substituting (3.11) and (3.13), $\alpha \nabla_k k_{ji} = 0$. Since α is almost everywhere non-zero in M, we have $\nabla_k k_{ji} = 0$. If we differentiate covariantly and take account of (3.11), (3.13) and $\nabla_k k_{ji} = 0$, we see that

(3.14)
$$\nabla_{k} f_{ji} = -g_{kj} u_{i} + g_{ki} u_{j} - k_{kj} v_{i} + k_{ki} v_{j}.$$

296

On the other hand, we have from (3.12)

$$\nabla_{j}u_{i}-\nabla_{i}u_{j}=2f_{ji},$$

from which, transvecting u' and substituting (2.6) and (2.9)

$$u^{j}\nabla_{j}u_{i} = \frac{1}{2}\nabla_{i}(1-\alpha^{2}-\beta^{2})-2(\alpha v_{i}+\beta w_{i}),$$

٠.

from which, using (3.11)

 $(3.15) u^j \nabla_j u_i = -\beta w_i.$

Transvecting (3.12) with u^{j} and using (2.6) and (3.15), we obtain

(3.16) $k_{ji}u^i = -v_j$

because α is almost everywhere non-zero.

Differentiating (3.16) covariantly and taking account of $\nabla_k k_{ji} = 0$ and (3.12), we have

$$(3.17) \qquad -\nabla_k v_j = k_{jm} f_k^m - \alpha k_{jm} k_k^m.$$

From the first equation of (3.11) we see that

 $\nabla_{j}v_{k} - \nabla_{k}v_{j} = 0.$ Thus (3.17) implies that (3.18) $k_{jm}f_{k}^{m} - k_{km}f_{j}^{m} = 0.$ Transvecting u^{k} to (3.18) and using (2.6), (2.7) and (3.16), we get (3.19) $\alpha k_{jm}v^{m} = -\beta k_{jm}w^{m} + \gamma w_{j} - \alpha u_{j}.$

Transvecting again (3.18) with f^{jk} and making use of (2.5) and the skew-symmetry of f^{jk} , we find

(3.20) $k_m^m = k_{ji} u^j u^i + k_{ji} v^j v^i + k_{ji} w^j w^i.$

Differentiating (3.18) covariantly and substituting (3.14), we obtain

$$k_{jm}(-g_{ki}u^{m}+\delta_{k}^{m}u_{i}-k_{ki}v^{m}+k_{k}^{m}v_{i})$$

= $k_{im}(-g_{kj}u^{m}+\delta_{k}^{m}u_{j}-k_{kj}v^{m}+k_{k}^{m}v_{j})$

by virtue of $\nabla_k k_{ji} = 0$, or, using (3.16)

። ድ ትር እ

(3.21)
Intrinsic Problems on
$$S^n(\frac{1}{\sqrt{2}}) \times S^{n+1}(\frac{1}{\sqrt{2}})$$

 $g_{ki}v_j + k_{jk}u_i - (k_{jm}v^m)k_{ki} + (k_{jm}k_k^m)v_i$
 $= g_{kj}v_i + k_{ik}u_j - (k_{im}v^m)k_{kj} + (k_{im}k_k^m)v_j$.
Differentiating the second equation of (2.9) covariantly, we find

$$(\nabla^{j}u^{i})v^{i}+u^{i}(\nabla_{j}v_{i})=-(\nabla_{j}\beta)\gamma-\beta\nabla_{j}\gamma,$$

from which, substituting (3.11), (3.12) and (3.17),

$$\beta \nabla_j \gamma = \gamma w_j - (f_j^i - \alpha k_j^i) v_i + u^i (k_{im} f_j^m - \alpha k_{im} k_j^m),$$

or, using (2.7) and (3.16),

(3.22)
$$\beta \nabla_j \gamma = 2\alpha k_{jm} v^m + 2\alpha u_j - \gamma w_{j}$$

Differentiating the first equation of (2.7) covariantly, we find

$$(\nabla_j f_i^h) v_h + f_i^h (\nabla_j v_h) = (\nabla_j \gamma) w_i + \gamma \nabla_j w_i - (\nabla_j \alpha) u_i - \alpha \nabla_j u_i$$

from which, taking skew-symmetric parts,

$$(\nabla_j f_i^h - \nabla_i f_j^h) v_h + f_i^h (\nabla_j v_h) - f_j^h (\nabla_i v_h)$$

= $(\nabla_j \gamma) w_i - (\nabla_i \gamma) w_j - (\nabla_j \alpha) u_i + (\nabla_i \alpha) u_j - \alpha (\nabla_j u_i - \nabla_i u_j),$

or, using (3.11), (3.12), (3.14) and (3.17),

(3.23)
$$-(v_j u_i - v_i u_j) + (k_{jm} v^m) v_i - (k_{im} v^m) v_j + 2\alpha f_i^h k_{hm} k_j^m$$
$$= (\nabla_j \gamma) w_i - (\nabla_i \gamma) w_j - 2\alpha f_{ji}.$$

Transvecting (3.23) with u^{j} and making use of (2.6), (2.7), (2.9), (2.10) and (3.16), we have

(3.24)
$$(\gamma^2 - \beta^2) v_i + \beta \gamma (k_i^m v_m) + 2\alpha \gamma k_{im} w^m$$
$$= (u^m \nabla_m \gamma) w_i - \alpha \gamma \nabla_i \gamma - \beta \gamma u_i + 2\alpha \beta w_i,$$

from which, using (3.19),

۲

$$\beta(\gamma^2 - \beta^2)v_i + \beta^2\gamma(k_i^m v_m) + 2\alpha\gamma(-\alpha k_{im}v^m + \gamma w_i - \alpha u_i)$$
$$= \beta(u^m \nabla_m \gamma)w_i - \alpha\beta\gamma \nabla_i \gamma - \beta^2\gamma u_i + 2\alpha\beta^2 w_i.$$

•

Since $\beta u^m \nabla_m \gamma = -2\alpha \beta^2 + \alpha \gamma^2$, from (3.16) and (3.22), the above equation becomes

$$\beta^2 \gamma(k_{im} v^m) = -\beta^2 \gamma u_i + \beta(\beta^2 - \gamma^2) v_i$$
, and consequently

(3.25)
$$k_{im}v^{m} = -u_{i} + ((\beta^{2} - \gamma^{2})/\beta\gamma)v_{i}$$

Substituting (3.25) into (3.21), (3.21) becomes

• . • - -. .

29

$$(3.26) \quad v_{j}\{g_{ki} - ((\beta^{2} - \gamma^{2})/\beta\gamma)k_{ki} - k_{km}k_{i}^{m}\} = v_{i}\{g_{kj} - ((\beta^{2} - \gamma^{2})/\beta\gamma)k_{kj} - k_{km}k_{j}^{m}\}.$$
Using (3.25), we also find
$$v^{m}[g_{km} - ((\beta^{2} - \gamma^{2})/\beta\gamma)k_{km} - k_{kj}k_{m}^{j}] = -2((\beta^{2} - \gamma^{2})/\beta\gamma)\{-u_{k} + ((\beta^{2} - \gamma^{2})/\beta\gamma)v_{k}\}.$$
Transvecting (3.26) with v^{j} and using the above equation, we get
$$(3.27) \qquad 0 = (1 - \alpha^{2} - \gamma^{2})\{g_{ki} - ((\beta^{2} - \gamma^{2})/\beta\gamma)k_{ki} - k_{km}k_{i}^{m}\}$$

+2($(\beta^2 - \gamma^2)/\beta\gamma$) { $-v_i u_k$ +($(\beta^2 - \gamma^2)/\beta\gamma$) $v_i v_k$ }, from which $0 = ((\beta^2 - \gamma^2)/\beta\gamma)(v_k u_i - v_i u_k)$, and consequently $\beta^2 - \gamma^2 = 0.$ (3.28) Thus, using (3.27) and (3.28), $k_{im}k_i^m = g_{ii}$ (3.29)Also, from (3.19), (3.25) and (3.28), we have $k_{jm}v^{m} = -u_{j}, \quad k_{jm}w^{m} = -\frac{\gamma}{\beta}w_{j}.$ (3.30)Moreover, from (3.11) and (3.17), $\nabla_k \nabla_j \alpha = 2k_{km} f_i^m - 2\alpha g_{ki},$ (3.31)and, using (2.9), (2.11), (3.16), (3.20) and (3.30), $k_m^m = \frac{\gamma}{\beta} = \pm 1$ (3.32)by virtue of (3.28).

Since the manifold is connected, $k_m^m = 1$ or $k_m^m = -1$ on the whole space. Thus the equations (3.29), (3.31), (3.32), $\nabla_k k_{ji} = 0$ and Theorem 1 prove the theorem.

Kyungpook University

BIBLIOGRAPHIES

- [1] Blair, D.E., G.D. Ludden and K. Yano, On the intrinsic geometry of $S^n \times S^n$, Math. Ann. 194 (1971), 68-77.
- [2] Ishihara, S. and U-Hang Ki, Complete Riemannian manifold with (f, g, u, v, λ)-structure, to appear in Jour. Diff. Geo.
- [3] Ki, U-Hang, Jin Suk Pak and Hyun Bae Suh, On $(f, g, u_{(k)}, \alpha_{(k)})$ -structures, to appear in Ködai Math. Sem. Rep.
- [4] Yano, K., Differential geometry of $S^n \times S^n$, to appear in Jour. Diff. Geo.